
ASIAN DEVELOPMENT BANK
6 ADB Avenue, Mandaluyong City
1550 Metro Manila, Philippines
www.adb.org

Mapping the Spatial Distribution of Poverty Using Satellite Imagery in Thailand

The “leave no one behind” principle of the 2030 Agenda for Sustainable Development requires 
appropriate indicators for different segments of a country’s population. This entails detailed, granular data 
on population groups that extend beyond national trends and averages. The Asian Development Bank 
(ADB), in collaboration with the National Statistical Office of Thailand and the Word Data Lab, conducted 
a feasibility study to enhance the granularity, cost-effectiveness, and compilation of high-quality poverty 
statistics in Thailand. This report documents the results of the study, providing insights on data collection 
requirements, advanced algorithmic techniques, and validation of poverty estimates using artificial 
intelligence to complement traditional data sources and conventional survey methods.

About the Asian Development Bank

ADB is committed to achieving a prosperous, inclusive, resilient, and sustainable Asia and the Pacific, 
while sustaining its efforts to eradicate extreme poverty. Established in 1966, it is owned by 68 members 
—49 from the region. Its main instruments for helping its developing member countries are policy dialogue, 
loans, equity investments, guarantees, grants, and technical assistance.

MAPPING THE SPATIAL 
DISTRIBUTION OF POVERTY 
USING SATELLITE IMAGERY  
IN THAILAND
APRIL 2021

ASIAN DEVELOPMENT BANK

www.adb.org




ASIAN DEVELOPMENT BANK

MAPPING THE SPATIAL 
DISTRIBUTION OF POVERTY 
USING SATELLITE IMAGERY  
IN THAILAND
APRIL 2021



 Creative Commons Attribution 3.0 IGO license (CC BY 3.0 IGO)

© 2021 Asian Development Bank
6 ADB Avenue, Mandaluyong City, 1550 Metro Manila, Philippines
Tel +63 2 8632 4444; Fax +63 2 8636 2444
www.adb.org

Some rights reserved. Published in 2021.

ISBN 978-92-9262-768-3 (print), 978-92-9262-769-0 (electronic), 978-92-9262-770-6 (ebook)
Publication Stock No. TCS210112-2
DOI: http://dx.doi.org/10.22617/TCS210112-2

The views expressed in this publication are those of the authors and do not necessarily reflect the views and policies 
of the Asian Development Bank (ADB) or its Board of Governors or the governments they represent. 

ADB does not guarantee the accuracy of the data included in this publication and accepts no responsibility for any 
consequence of their use. The mention of specific companies or products of manufacturers does not imply that they 
are endorsed or recommended by ADB in preference to others of a similar nature that are not mentioned.

By making any designation of or reference to a particular territory or geographic area, or by using the term “country” 
in this document, ADB does not intend to make any judgments as to the legal or other status of any territory or area.

This work is available under the Creative Commons Attribution 3.0 IGO license (CC BY 3.0 IGO)  
https://creativecommons.org/licenses/by/3.0/igo/. By using the content of this publication, you agree to be bound 
by the terms of this license. For attribution, translations, adaptations, and permissions, please read the provisions 
and terms of use at https://www.adb.org/terms-use#openaccess.

This CC license does not apply to non-ADB copyright materials in this publication. If the material is attributed 
to another source, please contact the copyright owner or publisher of that source for permission to reproduce it.  
ADB cannot be held liable for any claims that arise as a result of your use of the material.

Please contact pubsmarketing@adb.org if you have questions or comments with respect to content, or if you wish 
to obtain copyright permission for your intended use that does not fall within these terms, or for permission to use 
the ADB logo.

Corrigenda to ADB publications may be found at http://www.adb.org/publications/corrigenda.

Notes:
In this publication, “$” refers to United States dollars.
ADB recognizes “China” as the People’s Republic of China.

On the cover: The cover includes images of the Earth, Sentinel 2 satellite, pie and line charts, and a rural area in Thailand 
to show poverty mapping using satellite imagery, geospatial data, and machine learning algorithms (photos from public 
domain, European Space Agency, and ADB Flickr Account). Cover graphics was designed by Ron Lester Durante.

www.adb.org
https://creativecommons.org/licenses/by/3.0/igo/
https://www.adb.org/terms-use#openaccess
http://www.adb.org/publications/corrigenda


iii

Contents

Tables, Figures, and Box� iv
Foreword� vi
Acknowledgments� viii
Abbreviations� ix

1	 Background� 1
	 1.1	 Introduction� 1
	 1.2	 Sustainable Development Goal Data of Thailand� 2
	 1.3	 Socioeconomic Background of Thailand� 4
	 1.4	 ADB Technical Assistance � 7
	 1.5	 Overview of the Methodology� 8

2	 How Are Poverty Statistics Estimated?� 9
	 2.1	 How National Statistics Offices Conventionally Estimate Poverty� 9
	 2.2	 How Big Data Can Contribute to Enhanced Compilation of Development Statistics� 10
	 2.3	 Predicting Poverty Using Satellite Imagery and Geospatial Data� 10

3	 Tapping Computer Vision Algorithms for Predicting Poverty Rates� 12
	 3.1	 Basic Concepts� 12
	 3.2	 Using Machine Learning Algorithms to Perform Vision-Based Tasks� 14
	 3.3	 Predicting Poverty through the Use of Satellite Imagery� 16
	 3.4	 Using a Convolutional Neural Network and Ridge Regression for Predicting Poverty� 17
	 3.5	 Optimizing the Convolutional Neural Network� 24
	 3.6	 Extracting Features from the Convolutional Neural Network’s Output Layer � 27
	 3.7	 Using Ridge Regression to Translate Neural Network Features into Poverty Predictions� 27

4	 Using Random Forest Estimation to Compile Grid-Level Estimates of Poverty Head Counts� 29

5	 Key Findings� 33
	 5.1	 Comparing Averaged Features versus Averaged Outputs� 37
	 5.2	 Validating Image-Level Estimates� 37
	 5.3	 Comparing Results with a Simpler Model� 39
	 5.4	 Comparing Uncalibrated Machine Learning Poverty Rates with Published Poverty Rates� 41
	 5.5	 Harmonizing Machine Learning Poverty Rates with Published Poverty Rates� 42
	 5.6	 Comparing Calibrated Machine Learning Poverty Rates with Other Metrics of Poverty � 44

6	 Estimating Structural Models as an Alternative Method� 46

7	 Summary and Conclusion� 50

Appendix: Description of Variables Used in the Estimation of Population Density� 52
References� 54



iv

Tables, Figures, and Box

Tables
3.1	 Sample of a Typical Confusion Matrix� 13
3.2	 Uses of Landsat 8 Spectral Bands� 20
3.3	 Nighttime Light Clusters� 23
3.4a	 Sample Confusion Matrix with Weighted Cross Entropy Loss� 26
3.4b	 Sample Confusion Matrix without Weighted Cross Entropy Loss� 26
5.1	 Prediction Accuracy of Convolutional Neural Network� 33
5.2	 Root Mean Square Error by Year� 33
5.3	 Root Mean Square Error of Averaged Features and Averaged Outputs� 37
5.4	 Root Mean Square Error for Poverty Rate (Validation), Tambon-Level� 39
5.5	 Root Mean Square Error for Poverty Head Count (Validation), Tambon-Level� 39
5.6	 Calibration of Machine Learning Poverty Rates for Tambon X� 42

Figures
1.1	 Number of Available Disaggregated Data per Sustainable Development Goal� 3
1.2	 Status of Sustainable Development Goal Indicators in Thailand� 3
1.3	 Gross Domestic Product Per Capita of Select Asian Economies, 2019� 5
3.1	 Illustration of a Sample Neural Network� 12
3.2	 Measuring Cross Entropy Loss against Predicted Probability� 13
3.3	 Illustration of a Computer Vision Task� 14
3.4	 Illustration of a Neural Network� 15
3.5	 How Neural Network Filters Detect Vertical and Horizontal Lines� 16
3.6	 Road Map of the Methodology for Predicting Poverty Using Satellite Imagery� 18
3.7	 Image Color Bands within a Georeferenced Image File� 20
3.8	 Pansharpening Images to Improve Their Resolution� 21
3.9	 Low-Quality Satellite Images Isolated from Algorithm Training� 22
3.10	 Examples of Nighttime Light Images� 23
3.11	 Loss Function� 24
3.12a	 Learning Rate Plot against Loss Option 1 � 25
3.12b	 Learning Rate Plot against Loss Option 2� 25
3.13	 Examples of Features Extracted from the Convolutional Neural Network� 26
3.14	 Extracting a Convolutional Neural Network’s Output Layer � 27
4.1	 Random Forest of Classification Trees and Random Forest of Regression Trees� 30
4.2	 Artificial Surfaces and Associated Areas versus Population Density in Bangkok, 2015� 31
4.3	 Random Forest Prediction of Population Density in Bangkok � 32
5.1	 Scatter Plots of Published and Predicted Poverty Rates� 34
5.2	 Maps of Published and Predicted Poverty Rates� 36
5.3	 Scatterplot of Poverty Rates Based on Single-Image-per-Area � 38
5.4	 Scatterplot of Published and Predicted Poverty Rates, 2013� 40
5.5	 Scatterplot of Predicted Poverty Rates and Simple Night Light Intensity, 2013� 40
5.6	 Comparison of Government and Machine Learning Poverty Rates, by Decile� 41
5.7	 Comparison of Government and Machine Learning Poverty Rates, by Region� 42
5.8	 Calibration of Poverty Maps� 43
5.9	 Maps of Calibrated Machine Learning Poverty Predictions� 43



Tables, Figures, and Box v

5.10	 Maps of Calibrated Machine Learning Poverty Head Count� 44
6.1	 Relative Importance of Variables � 48
6.2	 Actual versus Predicted Income and Multidimensional Poverty Rates� 49

Box
	 Does the Algorithm’s Prediction Accuracy Improve When the Indicator Has More Variability?� 35



vi

Foreword

Over the past 4 decades, Thailand has witnessed sustained and significant economic progress. In a span of 
just one generation, the country has transitioned from a low-income economy to an upper middle-income 

country with gross domestic product per capita of $7,807 in 2019. This success has been driven largely by effective 
economic planning and well-coordinated policy implementation. Thailand also enjoys high literacy rates, with 85% 
of its population having attained secondary education, and the Thai people are generally living long and healthy 
lives: the country’s average life expectancy is 76.9 years. Based on the Human Development Index, Thailand is 
ranked 79.

Economic development in Thailand has been accompanied by a substantial decline in poverty. Government 
estimates show that, since 1990, the proportion of households living below the national poverty line dropped from 
around 55% to below 10%. However, data also show that the country’s average household income and consumption 
growth have slowed down in recent years and pockets of poverty, particularly in rural areas, still remain. Furthermore, 
environmental challenges (such as droughts), a rapidly aging population, economic downturns, and rising inequality 
have put the vulnerable segments of society at risk of being left behind.

To ensure that everyone benefits from economic development, monitoring poverty remains an important task 
for a middle-income country such as Thailand. The National Economic and Social Development Council and the 
National Statistical Office of Thailand are the government agencies responsible for compiling poverty statistics 
in the country, using data from the Household Socioeconomic Survey (SES), which is conducted every two years.

By design, the SES provides reliable estimates of poverty at the national and regional levels. However, like many 
other household income and expenditure surveys, the SES does not necessarily produce reliable poverty estimates 
at lower levels of disaggregation, from which data are often most needed for policymakers to efficiently target 
population segments in poverty reduction programs. The most common issue with statistical reliability is that 
the sample sizes of surveys are not huge enough. Increasing sample sizes would, however, require considerable 
additional funding that are not readily accessible to the organizations and national statistics offices (NSOs) that 
administer such surveys.

In response, some countries, including Thailand, have adopted small area estimation methods as an alternative, 
where survey data are supplemented with data from administrative records or censuses. These auxiliary data 
sources allow disaggregation of poverty statistics at more granular levels. However, since census and administrative 
data are not oftentimes available or readily obtainable, several studies have been conducted to explore the use of 
alternative sources of auxiliary data.

To drive the advancement of this knowledge, the Asian Development Bank (ADB) designed a knowledge initiative 
called Data for Development in 2017. The initiative aims to strengthen the capacity of NSOs in the Asia and Pacific 
region to meet the data requirements for effective policymaking and monitoring of development goals and targets. 
A component of the project focuses on the geographic disaggregation of the poverty statistics that are used to 
inform Sustainable Development Goal indicators. This component considers studies that use high-resolution 
satellite imagery, geospatial data, and powerful machine learning algorithms to complement traditional data 
sources and conventional survey methods. This method can be used to determine the magnitude of poverty in 
particular areas in the world, and the results can aid development organizations and governments in drafting more 
effective poverty reduction programs and allocating funds more efficiently.
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As part of the Data for Development initiative, statisticians from ADB’s Statistics and Data Innovation Unit 
within the Economic Research and Regional Cooperation Department worked with the National Statistical Office 
of Thailand and the World Data Lab to evaluate the feasibility of poverty mapping using satellite imagery and 
associated geospatial data. Researchers from the three organizations collaborated to explore methods that might 
enhance the granularity, cost effectiveness, and accuracy of poverty statistics.

This country report documents the results of the feasibility study for Thailand, providing insights on data collection 
requirements, advanced algorithmic techniques, and validation of poverty estimates generated via artificial 
intelligence.

We hope this publication will be useful for the National Statistical Office of Thailand, as well as NSOs across Asia 
and the Pacific, helping them embrace a new paradigm of delivering high-quality, granular, and cost-effective data 
for development purposes.

Yasuyuki Sawada
Chief Economist and Director General
Economic Research and Regional Cooperation Department
 Asian Development Bank
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1 Background

1.1	 Introduction

By the time the Millennium Development Goals (MDGs) concluded in 2015, the Asia and Pacific region had made 
notable achievements in many and varied dimensions of development—health, education, gender equity, and 
related areas. The region’s progress on poverty reduction was particularly noteworthy. While the MDG target for 
1990 to 2015 was to reduce income poverty by half, Asia and the Pacific reduced this indicator by two-thirds: 
the proportion of the population living on less than $1.25 a day tumbled from 53% in 1990 to 14% in 2012 (MDG 
Monitor 2016).

Within the region, Thailand was one of the countries that achieved remarkable progress in reducing poverty, 
slashing the number of poor households by four-fifths during the MDG implementation period (NSO 2019). 
In 2015, only 6.1% of all households in Thailand were considered poor, based on their national poverty line: this 
figure was down from 9.1% in 2014 (NSO 2020). More recent estimates, however, suggest that poverty reduction 
indicators such as household income and consumption growth have slowed down. In 2019, the proportion of the 
country’s households living below the national poverty line was estimated at 5.0%.

Data compiled for MDG monitoring can reflect the socioeconomic progress of a given country in relation to 
another national economy. However, these data are inadequate to show how different demographic segments 
of the country’s population fared, and how these pockets of the community might have performed in achieving 
or missing the MDG targets (ADB 2017). This lack of informative data at more granular levels creates problems 
for policy formulation, program design, and project implementation when targeting marginalized segments of the 
population.

Somewhat ironically, the inadequacies of the MDG data actually provided the impetus for the “leave no 
one behind” principle of the 2030 Agenda for Sustainable Development. The principle requires appropriate 
Sustainable Development Goal (SDG) indicators—such as income class, gender, ethnicity, geographic location, 
and other relevant dimensions—to be generated for different segments of a country’s population. This calls for 
more granular data on specific population groups extended the focus beyond national trends and averages, and 
toward identifying subgroups and communities that might be falling behind with regard to specific measures of 
well-being and development (ADB 2017). Thailand’s Voluntary National Review (2017) identified the need for 
disaggregation of data for policy planning and implementation of programs to achieve the SDGs.

With the reduction of national, regional, and provincial poverty rates sustained since the 1990s, Thailand’s focus 
has shifted to the remaining pockets of poverty in the country. The latest poverty estimates from the National 
Statistical Office of Thailand (NSO) and the National Economic and Social Development Council1 (NESDC) show 
that the country’s Southern region has the highest number of poor people, compared to Central Thailand and 
other regions. Meanwhile, provinces such as Mae Hong Son have larger numbers of poor, compared to provinces 
such as Loei. While Southern Thailand contains some of the poorest provinces, it also has wealthy provinces, such 
as Phuket and Surat Thani, indicating that the fight to eradicate poverty might be more difficult in specific areas.

To reveal the impoverished Thai communities often hidden behind regional aggregations, small area poverty 
estimation techniques were employed. In 2002, the NESDC and the NSO requested that the Thailand Development 
Research Institute (TDRI), aided by the technical expertise of the World Bank, produce the country’s first village-

1	 The NESDC was formerly the National Economic and Social Development Board.
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level poverty maps, based on the 2000 Population and Housing Census and the 2000 Household Socioeconomic 
Survey (Jitsuchon et al. 2007). Results of the analysis revealed that poverty was lowest in Bangkok and neighboring 
areas, while highest in the Northeast region, where more than two-thirds of the subdistricts and over half of all its 
villages had poverty incidence that exceeded the national average in 2000.

After the production of the first poverty maps in 2003 and 2005, the NSO has produced poverty maps since 2007. 
Due to turnover of staff, the NSO again sought the assistance of World Bank in training of new staff to generate 
poverty maps in 2015. NSO consistently produced village-level poverty maps every two years starting in 2013, with 
the latest estimates available for 2017. However, issues around the time invariance of variables and the timeliness 
of generating the estimates have reduced the effectiveness of targeting specific sectors of the population.

To address such limitations and, at the same time, complement poverty estimates generated from conventional 
data sources, Thailand has considered the use of innovative data sources. In other countries, data from satellites 
and mobile phones have been used in small area estimations to measure economic well-being. For instance, in 
Ghana and Uganda, Heitmann and Buri (2019) combined satellite images with geospatial data to estimate poverty 
in regions bounded by mobile phone tower locations. Meanwhile, Jean et al. (2016) used a transfer-learning model 
that combined satellite imagery and economic survey data to predict average expenditure and asset wealth at the 
household level in five developing African countries. Unlike traditional data sources (such as censuses, surveys, 
and administrative records), these digital sources produce data that can be processed immediately after collection, 
delivering more up-to-date and granular estimates of poverty (Castelan et al. 2019).

To assist Thailand in its quest for more relevant and disaggregated data to inform policy design and develop 
targeted poverty reduction initiatives, the Asian Development Bank (ADB) deployed experts under its Data for 
Development technical assistance project to conduct a case study of innovative data analytics for select SDG 
indicators in Thailand. This report presents a detailed discussion of the alternative methodologies, particularly 
the use of satellite imagery, for generating more geographically disaggregated data of poverty and population to 
monitor SDG targets.

1.2	 Sustainable Development Goal Data of Thailand

The Thailand Economic Development Plan is a 5-year plan formulated by the NESDC. It aims to translate the 
country’s 20-year national strategy framework into a series of prioritized actions. Aside from guiding the framework, 
the development plan adheres to Thailand’s Sufficiency Economy Philosophy, the SDGs, the Thailand 4.0 Policy, 
and other reform agendas (NESDC 2016).2 Aware of the importance in driving the nation toward sustainable 
development beyond the MDGs, the Government of Thailand has integrated the SDGs into the country’s strategies, 
action plans, and reform processes (MFA 2017).

Thailand’s institutional mechanisms for achieving the SDGs include a subcommittee charged with developing 
information to support sustainable development. This subcommittee includes the NSO and the NESDC joint 
secretariat. It is mandated to: (i) set guidelines for creating a national database to support policy formulation and 
decision-making; (ii) integrate guidelines to consolidate data collection by central and local government as well 
as the private sector; (iii) prepare a system for the monitoring and evaluation of Thailand’s development data and 
statistics; and (iv) monitor and evaluate the implementation of the centralized database.

2	 The Sufficiency Economy Philosophy (SEP) has been a key guiding principle of Thailand’s sustainable development efforts. The philosophy 
stresses balance in the use of economic, social, environmental and cultural capital. The SEP is based on three principles that stress a middle path 
for Thai people at all levels, from family to community to country: moderation, reasonableness, and the need for immunity through adequate 
protection from negative impacts arising from internal and external changes, the country made remarkable progress in achieving most of the 
MDGs including poverty reduction.

https://thailand.opendevelopmentmekong.net/dataset/?id=sufficiency-economy-philosophy-thailands-path-towards-the-sustainable-development-goals&search_query=P3R5cGU9bGlicmFyeV9yZWNvcmQmdGF4b25vbXk9YWxsJnNvcnRpbmc9c2NvcmUmcXVlcnk9U3VmZmljaWVuY3krRWNvbm9teStQaGlsb3NvcGh5JTNBK1RoYWlsYW5kJUUyJTgwJTk5cytQYXRoK3Rvd2FyZHMrU3VzdGFpbmFibGUrRGV2ZWxvcG1lbnQrR29hbHM=
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The responsibility for implementing programs and monitoring the country’s progress toward the SDGs is distributed 
to various government ministries. The availability of data to fulfil specific SDG indicators is monitored by the NSO, 
and the status of available disaggregated data for this purpose is shown in Figure 1.1.

Figure 1.2 shows the relevance of SDG indicators in Thailand.

Figure 1.1: Number of Available Disaggregated Data per Sustainable Development Goal

Dis = Disability, EIS = Ethnicity and indigenous, Inc = Income, Mig = Migration.
Source: B. Sangaroon et al. 2019. Small Area Estimation method and Big data for data disaggregation: Case studies and country 
examples. Graphics generated by the study team.
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Figure 1.2: Status of Sustainable Development Goal Indicators in Thailand
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Population and poverty indicators are among the most cited in development strategies and initiatives. Population 
growth plays a crucial role in economic development, while indicators related to poverty are markers to determine 
the well-being of the population. The NSO collects data on population, with statistics disaggregated by sex and 
geographic area, through the Census of Population and Housing, which is conducted every 10 years. Meanwhile, 
the Ministry of Interior compiles data on the registered population by age, sex, and province. Official poverty 
statistics by region and province are calculated by the NSO, based on the results of the Household Socioeconomic 
Survey. The Ministry of Interior compiles administrative data on basic minimum needs via the National Rural 
Development Committee Survey. These datasets contain information at the village, subdistrict, and provincial 
levels, each reflecting demographic, physical, economic, and social conditions (Jitsuchon et al. 2007).

1.3	 Socioeconomic Background of Thailand

General information

The Kingdom of Thailand is located in the heart of Southeast Asia and has a land area of 513,120 square kilometers. 
The country is divided into six geographic regions and, politically, into four administrative regions with 77 provinces, 
which include the special local territories of Bangkok and Pattaya. Based on census data, the population of Thailand 
in 2010 was approximately 66 million people, 55.8% of whom resided in nonmunicipal areas while 45.2% resided 
in municipal areas. The registered population for 2019 is 66.6 million with population growth rate of 0.2%. The 
country had a population density of 129.7 people per square kilometer and the average household size was 2.5 
people in 2019. Bangkok, the capital city, is the center of administrative management of Thailand. The population 
of Bangkok was 5.7 million in 2019, with a population density of 3,611 people per square kilometer.

Economic and Social Well-Being

In 2019, 31.0% of Thailand’s labor force was employed in agriculture, forestry, and fishing; 17.8% in manufacturing; 
and 51.2% in the services sector. In 2019, there were 39,916,251 tourists to the country, a 22.7% increase on the 
2016 figure. In less than a generation, Thailand has shifted from a low-income country to an upper middle-income 
country (World Bank 2011). The country’s gross domestic product per capita ($7,807) was the fourth among 
select Asian economies in 2019, surpassed only by Singapore, Brunei Darussalam, and Malaysia (Figure 1.3). This 
sustained growth in the economy has led to the creation of jobs that have raised many people out of poverty. 
Thailand has also made gains in other development indicators—children are getting more years of education, social 
security programs have expanded, and universal health coverage is now a reality. However, the country’s economy, 
along with the rest of the world, is expected to contract due to the impact of the coronavirus disease (COVID-19) 
pandemic on trade and tourism as well as domestic consumption (ADB 2020; World Bank 2020).

Poverty Reduction Programs in Thailand

In 2019, around three in every 1,000 Thai people (about 208,877 people in total) lived on less than $3.20 a day—
one of the international poverty lines being used by the World Bank. Expressed as a percentage, this is just 0.3% 
of the Thai population classified as poor by global standards (World Bank 2021). In 2000, this same proportion 
was 18.3% or about 11.5 million people. In terms of Thailand’s national poverty line, however, 6.2% of the country’s 
population for 2019 (about 4.3 million people) were defined as poor.

While poverty rates in Thailand consistently declined from 2000 to 2015, they rose in 2016 and again in 2018, 
due to reductions in household income and consumption. Increased poverty was evident in all regions and 61 of 
77 provinces. Inequality also increased from 2015 to 2017, during which time the average per capita expenditure 
of households rose overall but shrank for the bottom 40% of income earners (World Bank 2020). The Southern 
Region had the highest poverty head count index among the regions in 2019. The five provinces with the 
highest poverty head count index in 2018 were Pattani (29.7%) and Narathiwat (25.5%) in the Southern Region,  
Mae Hong Son (25.2%) and Tak (21.1%) in the Northern Region, and Kalasin (20.2%) in the Northeastern Region.
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Figure 1.3: Gross Domestic Product per Capita of Select Asian Economies, 2019 
(current $)

BRU = Brunei Darussalam, CAM = Cambodia, INO = Indonesia, LAO = Lao People’s Democratic Republic, MAL = Malaysia,  
PHI = Philippines, SIN = Singapore, THA = Thailand, VIE = Viet Nam.
Source: World Bank Open Data. 2021. GDP Per Capita. https://data.worldbank.org/indicator/NY.GDP.PCAP.CD (accessed  
6 April 2021).
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Thailand’s steady decline in poverty from 2000 to 2015 can be attributed to various government programs to 
alleviate the hardships of the poor. Village and urban community funds provided financial support to help people 
be more self-reliant via greater employment opportunities, better income, and more expansive social welfare 
(World Bank 2020). A moratorium on farmers’ debts was also put in place from 2001 to 2004 (World Bank 2005).

To encourage new business development, the People’s Bank Project expanded financial opportunities for small-
scale entrepreneurs. The “One Tambon One Product” policy aimed to increase the incomes of villagers and raise 
the standard of living in small communities (village). Meanwhile, the Sufficiency Economy Policy (SEP) espoused 
by King Bhumibol Adulyadej, focused on development of human resources based on sufficiency, moderation, 
reasonableness, and resilience (NESDC 2011). In the country’s Twelfth National Economic and Social Development 
Plan, there was an emphasis on the improvement of the quality of social services, closing gaps in social protection, 
enhancement of labor skills, and improvement of labor productivity and income (NESDC 2016). The government 
included in the development plan (and the associated national strategy framework) policies that are in line with the 
SEP’s people-centered development approach. Under these policies, 878 villages were set up as SEP models that 
aimed to increase incomes, reduce household expenditure, and promote the welfare of rural communities.

The Pracharath Rake Samakee was established in 76 provinces to enable the private sector to partner with the 
Government of Thailand to aid communities and promote social enterprises. Agriculture, products processed by 
small and medium-sized enterprises, and community tourism were the three strategic pillars of this public-private 
partnership initiative.

By 2016, some 325,609 low-income families in Thailand were being provided financial subsidies, while 7.34 million 
senior citizens and 1.67 million people with disabilities were covered by allowances. Various housing projects, 
such as the Pracharath Housing Project and the Homeless’ Quality of Life Project, were implemented to provide 
improved housing and accommodation for the poor (MFA 2017). To further support the livelihoods of those  
earning less than B100,000 annually, the government started the Registration for State Social Welfare Scheme, 
which provided B17,469 million in assistance (MFA 2017). A land management policy was also introduced that 
included in its goals the reallocation of land for the poor (MFA 2017).

https://data.worldbank.org/indicator/NY.GDP.PCAP.CD
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In 2017, Thailand implemented a major welfare program aimed at eradicating poverty by providing a monthly 
allowance to 11 million people. This scheme used cashless welfare cards and is part of the 2015 National e-Payment 
Master Plan that aims to better integrate technology in economic affairs. The cards are used to buy goods at 
registered shops and in transport systems (Durongkaveroj 2018).

Policy Uses of Geographically Disaggregated Poverty Estimates

Despite the gains achieved by Thailand in reducing overall poverty, multidimensional inequality still remains. This 
scenario highlights the need for targeted social investment based on accurately identifying specific groups requiring 
special assistance (NESDC 2017).

While the NESDC produces poverty statistics at the national and regional levels, village or community level data 
are essential for identifying precisely who the poor are and where they live (Sangaroon et al. 2019). The NSO 
conducts the Census of Population and Housing every 10 years and the Household Socioeconomic Survey every 
two years. Population data from the census are available by village level, while income and expenditure data from 
the socioeconomic survey are disaggregated by province.

The need for village-level poverty statistics to guide efforts to reduce poverty and inequality was first addressed 
by the poverty mapping program that began in Thailand in 2003. The NSO, in partnership with the NESDC and 
the World Bank, came up with village-level poverty maps by using the small area estimation (SAE) technique of 
Elbers, Lanjouw, and Lanjouw. These poverty maps have since been used for planning, policymaking, monitoring, 
and evaluation of the country’s poverty situation, specifically at the local level (NSO 2016). They have been 
employed to measure clustering and distribution of the poor, increase the understanding of factors that contribute 
to poverty, and support the implementation and evaluation of various poverty reduction programs introduced by 
the government (NSO 2018).

The poverty maps will be useful in achieving the government’s goal of providing targeted assistance to the poor 
and underprivileged by accurately identifying disadvantaged groups, such as low-income earners, to eventually 
break the cycle of poverty (NESDC 2017). They can also be used to help draft evidence-based local community 
development plans that accurately reflect the needs of the people at the village, subdistrict, and district levels 
(NESDC 2017).

The maps are, however, produced only every 2 years, since the data are extracted from the Household 
Socioeconomic Survey, and this raises the issue of the timeliness of the estimates. Exploring more readily available 
sources of data for poverty estimation, such as geospatial and other data extracted from satellite imagery, can 
potentially address the issues of timeliness and granularity that are usually associated with conventional sources.

Use of Innovative Data Sources in Generating Thai Development Statistics

Thailand’s Twelfth National Economic and Social Development Plan places an emphasis on the importance 
of research and innovation to enhance the country’s competitiveness and benefit its society, particularly the 
disadvantaged segments of the population, such as the disabled and the elderly (NESDC 2016). The plan aims 
to partner with the private sector to strengthen the capabilities of scientific personnel and the efficiency of 
the research management system, thereby allowing Thailand to attain its goals in the development of science, 
technology, research, and innovation (NESDC 2016).

In 2017, the Government of Thailand approached DEVELOP, a laboratory within the University of Alabama, to 
combine province-level poverty estimates with data from night lights, to make predictions of poverty on the ground 
(ESS 2017).
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The Thai People Map and Analytics Platform (TPMAP), developed in 2018, was the result of collaboration between 
the National Economic and Social Development Council and the National Electronics and Computer Technology 
Center of the Ministry of Science and Technology. TPMAP is a system that draws on the government’s big data to 
improve the quality of life of the Thai people. It uses the information on basic necessities from the Department 
of Community and Development in combination with state welfare registrar data from the Ministry of Finance. 
TPMAP is a system designed to address poverty in Thailand by defining where the poor are, what their problems 
are, and how they can escape poverty (NECTEC 2019).

1.4	 ADB Technical Assistance

ADB’s Data for Development project supports the statistical capacity of national statistics offices (NSOs) in 
Asia and the Pacific, helping them source and analyze the data needed for policymaking and monitoring of the 
SDGs. The major components of the project include: (i) subnational disaggregation of data to monitor the SDGs, 
(ii) enhanced compilation of national accounts and other key economic indicators, and (iii) provision of strategic 
inputs for the modernization of national statistical systems to inform policy design and statistical capacity-building 
initiatives of the global statistical system (ADB 2017).

The first component focuses on enhancing the capacity of NSOs to produce granular data that may be used 
as evidence to efficiently target development programs for the vulnerable sectors of society. Outputs of the 
component comprise a technical manual on disaggregation of official statistics, knowledge-sharing activities, and 
case studies on applications of innovative data disaggregation for select SDG indicators. The technical manual 
discusses SAE approaches and the use of innovative data sources (such as satellite images, mobile phone records, 
or social media datasets) to generate fine-grained data for official statistics. The project also supports a series of 
training programs to help strengthen the capacity of NSOs in statistical methods that can be applied to achieve the 
disaggregated data requirements of the SDGs. Finally, the project includes two country case studies that address 
specific applications of SAE and innovative data analytics to disaggregate poverty data.

The Data for Development project is linked to the Cape Town Global Action Plan for Sustainable Development 
Data and ADB’s Strategy 2030 framework. The action plan aims to provide developing and least-developed 
countries with capacity building on SDG indicators and to help them prepare their national statistical systems in 
responding to the statistical needs of the 2030 Agenda for Sustainable Development (UN DESA 2017). Meanwhile, 
ADB’s Strategy 2030 sets strategic development goals for Asia and the Pacific, including those connected to global 
commitments such as the SDGs and financing of the sustainable development agenda. Considering the pockets 
of existing poverty and inequality across the Asia and Pacific region, ADB plans to expand its program to eliminate 
severe poverty and extend initiatives in education, health, and social protection (ADB 2018).

Under the Data for Development component on capacity building, NSO staff in participating ADB member 
countries are introduced to the basic concepts of SAE methods; basic programming in R; and application of big 
data sources to compile and disaggregate specific socioeconomic indicators for the SDGs, including poverty-
related statistics. These staff are trained in machine learning algorithms using satellite imagery and geospatial data, 
random forest estimation for population mapping, and convolutional neural networks and ridge regression for 
poverty mapping. The Data for Development project recommends the use of open platforms and nonproprietary 
data to ensure resources are available to sustain the ongoing generation of estimates. This allows greater scope for 
scaling up and institutionalization of alternative data source techniques within individual NSOs.
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1.5	 Overview of the Methodology

Thailand publishes consumption-based poverty statistics at the village or tambon level every two years. This report 
details the outcomes of the Data for Development study in Thailand, which explored the possibility of enhancing 
the granularity of government-published estimates by adopting the approach of Jean et al. (2016), researchers 
from Stanford University, who used a combination of surveys, censuses, satellite imagery, and machine learning to 
enhance official poverty statistics.

The first step entailed training a machine learning algorithm known as a convolutional neural network (CNN), an 
approach commonly used for image classification. In this study, the CNN was trained to predict the intensity of 
night lights using daytime satellite images as input. While predicting night light intensity, the CNN simultaneously 
learns to recognize features within daytime images that can reflect welfare and development levels in a particular 
community. The mean of the information extracted from the images was taken to correspond to the disaggregation 
of government-published poverty estimates (ADB 2020).

The next step used the trained CNN as a mathematical function to synthesize the multidimensional input image 
into a single vector. The vector consists of more than 500 elements or “features”. The features represent what the 
CNN detects on the image. It does not matter where the features appear on the image, since the convolutional 
layers scan over the image using kernels.

The average value of each feature within a given area was then taken and used to align the grid-based image 
features with the government-published poverty data.

Next, ridge regressions were applied to examine the relationship between the image features and the government-
published estimates of poverty.3 The trained CNN and parameters derived from the ridge regressions were then 
used to predict image-level poverty (expressed as a grid of approximately 4 kilometers [km] by 4 km) using the 
daytime images as input.

3	 Hofer et al. (2020) also used random forest estimation as an alternative to ridge regression, and found similar results. 
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2 How Are Poverty Statistics Estimated?

2.1	 How National Statistics Offices Conventionally Estimate Poverty

For most developing countries in Asia and the Pacific, official poverty statistics are estimated at the national, 
regional, or provincial levels. However, NSOs of some countries are currently working with development partners 
to further disaggregate poverty statistics (ADB 2020).

Making poverty data available at more granular levels will allow policymakers to effectively and efficiently target the 
poor. This entails counting and identifying impoverished individuals and households, specifying their locations, and 
detailing the reasons for their socioeconomic disadvantage. Geographically disaggregated poverty statistics will 
facilitate the profiling of these individuals to ensure they are included in the socioeconomic agenda.

Using granular data as inputs, programs and policies can more specifically address issues of poverty and inequality. 
It can help better define social protection programs, such as cash transfers and employment schemes, to improve 
the plight of the poor and disadvantaged. Moreover, trends toward more granular poverty data can help assess the 
benefits that such programs may or may not be delivering to the poor.

In measuring poverty, a welfare metric should be identified for assessing whether or not an individual or household 
is poor. Income and expenditure are commonly used as metrics to be compared with a determined poverty  
threshold (ADB 2020). Surveys on living standards and household income and expenditure are generally the 
sources of data used for deriving expenditure and income.

In most developed countries, the national poverty line is based on relative standards. This relative poverty line 
considers the median income of an individual or family to maintain an average living standard as a point of 
comparison to those who might be considered poor (UN DESA 2005). The World Bank has international poverty 
lines including $3.20 per day, which is based on 2011 purchasing power parity. However, many countries adopt the 
“cost of basic needs” approach in measuring absolute poverty. This estimates severe deprivation of basic human 
needs such as food, safe drinking water, sanitation facilities, health, shelter, education, and information (UN 1995). 
The approach determines a food basket that meets the minimum nutritional requirements set by the World Health 
Organization and Food and Agricultural Organization of the United Nations.

Incorporating “equivalence scale adjustments” is another common practice in poverty estimation. An equivalence 
scale indicates that households with the same income or expenditure do not necessarily have the same economic 
capacity, since this capacity will depend on the number of dependent members in the household. Economic status 
is therefore usually determined by dividing the household income or expenditure by the family or household size, 
then determining whether the resulting value is above or below the poverty line. Some NSOs also assign index 
weights based on the age of the family members to estimate poverty.

In Thailand, the national poverty line is based on the cost or value of food and nonfood products needed for an 
individual to survive. It reflects the minimum standard of living of the Thai population. Included are expenditures 
on residence, home accessories such as miscellaneous appliances and household expenses on utilities, wages 
of household help, clothes, shoes, accessories, personal services, medical supplies and expenses, travel and 
communication, education, entertainment, and religious activities. The proportion of people below the poverty 
line is estimated by calculating the number of people whose daily expenditures are below the poverty threshold 
(average daily consumption expenditure per person) divided by the total population (NESDC 2017).
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While it is obvious that more granular poverty data are needed to accurately address the issues of the poor, many 
NSOs are constrained by the financial and human resources available to them. Conventional data sources, such as 
administrative records and census information, can provide the required granularity, but the resources are simply 
not available to gather such data on a sufficiently regular basis.

In 2003, the World Bank developed the SAE method, which is now commonly used as an alternative to conventional 
poverty estimation. Poverty mapping is performed using the survey data to build a welfare model that can be applied 
to the census data, thereby predicting income or expenditure levels and eventually generating poverty estimates at 
finer levels of granularity. However, where the reference years of the survey and census data do not coincide, the 
adequacy of the SAE model is limited to the use of variables that do not change over time.

2.2	� How Big Data Can Contribute to Enhanced Compilation  
of Development Statistics

Considering the issues that may be encountered by blending conventional data to estimate poverty, it is useful to 
explore the use of alternative data sources such as big data. Satellite imagery, geospatial data, and mobile phone 
records are some innovative data sources that could enhance the compilation of development statistics (Eagle et 
al. 2010; Data 2x 2019). For instance, since mobile phone data and satellite images are collected daily, they can 
provide almost real-time information for swift analysis (Pizatella-Haswell 2018). If mobile companies were to allow 
the use of their data, accessing such datasets would be far less costly than conducting nationwide surveys. Auxiliary 
data that indicate economic status can also be taken from social media and global positioning systems.

To produce more granular data to predict poverty, the SAE framework can be extended by integrating big data into 
it. As suggested in a study by Marchetti and colleagues in 2015, there are three approaches that can be considered 
in incorporating big data into the SAE framework: one is to create fine-grained indicators from big data and correlate 
these with SAE indicators; another is to produce covariates from big data to be used as auxiliary variables in the 
SAE model; and the third is to use survey data to eliminate any self-selection bias of information from big data.

The first approach suggests extracting granular detail from the big data source. However, one of the constraints of 
big data is self-selection bias. It can be assumed that the information generated from big data can provide reliable 
estimates at the small area level when the SAE indicators and those generated from big data are comparable. 
Further studies need to be done to examine the variable of interest at the desired level of disaggregation 
(ADB 2020).

The second approach involves generating covariates from big data sources to be used as auxiliary variables in 
statistical modeling. Big data may, however, require more complex SAE methods to address potential sampling and 
nonsampling errors associated with it (ADB 2020).

The third approach evaluates the distribution of survey and big data values to ensure consistency and reliability. In 
cases where specific segments of the population are targeted for statistical assessment, the representativeness of 
big data must be checked. The common variables between survey and big data must be examined for differences 
or, if such variables are absent, correlated variables must be explored (ADB 2020).

2.3	 Predicting Poverty Using Satellite Imagery and Geospatial Data

Although other types of big data can be considered in poverty estimation, the accessibility of satellite imagery 
and geospatial data—as well as the ease of scaling up related initiatives—can motivate NSOs to these sources in 
generating granular poverty estimates.

Literature on poverty estimation provides two methods that generally use data from nontraditional sources.
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The first method uses covariates from geospatial data and related information that can be taken from satellite 
imagery to develop a structural model to predict poverty. A World Bank study showed strong correlation between 
predicted poverty and spatial imagery variables, indicating a 40% to 60% variation in village-level poverty as 
explained by the national model (Engstrom et al. 2016). The study aimed to explain poverty variations at the 
village level in developing countries such as Sri Lanka. It used satellite imagery variables, including the number of 
buildings, building density, shadow areas, number of cars, road density, type of farmland, type of roofing material, 
and vegetation index. Marchetti et al. (2015) applied the same methodological framework, whereby data on 
mobility derived through vehicular global positioning systems were used as covariates to estimate an actual poverty 
head count and average household income (equivalized) in local labor systems in Tuscany, Italy.

The second method relies on neural networks and deep machine learning algorithms. A study to predict poverty 
in rural India trained a convolutional model using satellite imagery data on roofing material, sources of lighting and 
drinking water, roads, farms, and bodies of water (Pandey et al. 2018). Another study implemented deep learning 
to predict poverty in six cities in North and South America (Piaggesi et al. 2019). This second general method 
performs better in prediction-related tasks compared to the first approach.

The study done by Stanford University researchers (Jean et al. 2016) is one of the most commonly cited that 
follows the second approach. The main goal of the study was to estimate the prevalence of poverty by examining 
high-resolution satellite imagery.
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3 �Tapping Computer Vision Algorithms 
for Predicting Poverty Rates

3.1	 Basic Concepts

More recent methodologies of poverty prediction, including Jean et al. (2016), are becoming popular among 
development professionals because they explore several aspects of artificial intelligence. Artificial intelligence 
is the umbrella term for the creation of machines that can simulate human intelligence in solving problems and 
performing certain tasks. Machine learning, a subset of artificial intelligence, involves algorithms designed to 
progressively learn from data, without being explicitly programmed to do so. These algorithms require complex 
mathematical calculations to achieve the desired learning pattern. Machine learning algorithms have evolved into 
sophisticated algorithms capable of mimicking the structure of the human brain. Neural networks are machine 
learning models that follow a logical structure patterned from the way the human brain makes decisions. With 
these definitions established, it should be noted that conventional neural networks, having only a few hundred 
neurons connected in a relatively simple manner, do not have the capacity to tackle even basic tasks (ADB 2020).

The structure of a neural network consists of numerous nodes and edges. These nodes merge to form different 
layers within a neural network. The input layer takes in the raw data, while every node or neuron in the hidden layers 
is activated when it detects a particular feature or pattern. The output layer classifies the identified features into 
their appropriate category. Figure 3.1 shows the connections through computational graphs (ADB 2020).

Loss functions in machine learning evaluate an algorithm’s capacity to perform tasks. These functions have large 
values when the predictions significantly deviate from the actual results. The algorithm is therefore calibrated to 
minimize the value of the loss function. Loss functions are broadly categorized into two groups: regression-based 
and classification-based. For regression-based loss functions, the outcomes are measured on a continuous scale, 

Figure 3.1: Illustration of a Sample Neural Network

Source: Graphics generated by the study team.

Input Layer Hidden Layers Output Layer



Tapping Computer Vision Algorithms for Predicting Poverty Rates 13

while classification-based loss functions predict output from a finite set of categorical values. Some examples of 
loss functions usually used in regression-based tasks are “mean square error” and “mean absolute error”, while 
the cross entropy loss function is used in classification-based tasks (ADB 2020). The cross entropy loss function 
evaluates the performance of algorithms that have outputs with probability values between 0 and 1. It yields values 
approaching 1 as the predicted probability diverges from the actual result (Figure 3.2).

Figure 3.2: Measuring Cross Entropy Loss against Predicted Probability

Source: Calculations generated by the study team.
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Another way of evaluating the performance of machine learning algorithms designed for classification-based tasks 
is the confusion or error matrix. It is a table that maps the frequency of the actual class on each row and the 
frequency of the predicted class in each column. Table 3.1 is an example of a confusion matrix that shows the actual 
number of images “5”, “6”, and “7” to be classified and the number of images predicted as “5”, “6”, and “7”. Of 50 
images of “5”, 45 were correctly classified, 1 was classified as “6”, and 4 were classified as “7”.

Table 3.1: Sample of a Typical Confusion Matrix

Predicted class

5 6 7 # images to be 
classified

A
ct

ua
l c

la
ss 5 45 1 4 50

6 3 30 2 35

7 1 2 12 15

 # images 
classified 49 33 18 100

Source: Hypothetical data generated by the study team.
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The process of improving the performance of an algorithm is called optimization. It minimizes the specified 
loss function by modifying the model’s parameters. Optimization can occur as an algorithm runs through each 
successive epoch—a complete cycle of presenting the underlying data set to be used for learning. Most machine 
learning algorithms need many epochs during the learning process (ADB 2020).

3.2	 Using Machine Learning Algorithms to Perform Vision-Based Tasks

An illustration of what a deep machine learning algorithm sees in a vision-based task is shown in Figure 3.3. The 
computer sees images differently than humans do. It simply sees “features” or different patterns in a certain image. 
On the left of Figure 3.3 is an image of the handwritten characters “10”, “M”, “M”, and “1”. Since the computer is 
trained to spot specific features to make this image less abstract, simple geometric filters are the initial layers of 
the deep learning algorithm. Horizontal edges are filtered first by the machine learning algorithm, as shown in the 
middle image of Figure 3.3, then the vertical edges are filtered as seen in the right image. As the learning process 
of the algorithm “deepens”, more complicated features and patterns of an image can be filtered until it is classified 
into its appropriate category.

Figure 3.3: Illustration of a Computer Vision Task

Source: Computer vision generated by the study team.

Many “labelled” images are required to train an algorithm to successfully recognize particular features. The 
algorithm in this example would need to train on large volumes of labelled handwritten characters to identify the 
various alphanumeric combinations featured in any database of images.

It is possible to develop an algorithm that can perform a vision-based task, such as predicting night light intensity 
based on daytime satellite imagery. Such algorithms are usually based on a neural network. These neural networks 
are inspired by the human brain and are composed of connected nodes called neurons. A neural network has three 
main parts: an input layer, hidden layers in the middle, and an output layer. In conducting image analysis, the input 
layer takes in the raw data, each neuron in the hidden layers then serves as filter and is activated when it detects a 
specific feature, while the output layer identifies the category to which the image belongs.

To illustrate how a neural network operates, an example of the numeric character “5” is shown in Figure 3.4. Here, 
the neural network assumes that the digital image is formatted as an 8-pixels x 8-pixels image. The neural network’s 
input layer begins then with 64 neurons, corresponding to each of the 8 x 8 pixels.
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In a vision-based task, each neuron in the input layer corresponds to a number that represents the grayscale 
value of the corresponding pixel. Grayscale values usually range from 0 to 1, where 0 is associated with black and 
1 is associated with white. From the input layer to the hidden layers, these values are converted to mathematical 
functions that can identify specific features of an image (ADB 2020). Activation is triggered according to the 
number associated with each neuron in the hidden layers, indicating that a particular feature has been detected. 

To simplify this explanation, Figure 3.4 shows two hidden layers. From the input layer consisting of 64 neurons of 
grayscale values, the two hidden layers look for features. The first layer looks for horizontal lines and the second 
layer looks for vertical lines. The output is then categorized into one of the 10 numerical digits in the final layer 
(ADB 2020). The activation in the neurons of the output layer demonstrates how the neural network understands 
the given input image.

Figure 3.4: Illustration of a Neural Network

Source: Graphics generated by the study team.
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To make hidden layers behave differently, there are many variants of neural networks, one of which is a convolutional 
neural network (CNN), a kind of deep learning algorithm. 

Using the example from Figure 3.4 to illustrate the concept of convolution, it is assumed that there are four  
3 x 3 filters for the CNN, as shown on the first row of Figure 3.5. The objective of each filter is to search for image 
features, in this case a particular type of edge. Each filter consists of independent values that represent some 
feature. It is assumed that -1s are for black, 1s are white, and 0s represent gray. 

The CNN runs the input image through each of the four filters. During convolution, the 3 x 3 filter scans each group 
of nine pixels clustered together. It then multiplies the filters and the pixel clusters. The results of this process are 
shown in the third row of Figure 3.5. The first filter searches for top horizontal edges, indicated by the brightest 
pixel, while the next filter looks for left vertical edges. The third filter searches for bottom horizontal edges and the 
fourth for right vertical edges (ADB 2020). The layers of the CNN detect more sophisticated patterns as the filter 
goes deeper. 
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A CNN is designed to handle the huge amounts of unstructured pixelized data that digital images are composed 
of. One advantage of using a CNN over other types of neural networks is that it is more computationally efficient 
in filtering distinct image features without human supervision (Dertat 2017). CNN models can be implemented on 
virtually any device through the use of special convolution, parameter sharing, and pooling operations, giving them 
wide appeal in various statistical applications (Dertat 2017). 

3.3	 Predicting Poverty through the Use of Satellite Imagery 

There are numerous studies that have employed the use of satellite luminosity data as a proxy for social and 
economic indicators.

Sutton (1997) observed that spatial analysis of the clusters of saturated pixels may be helpful as smart  
interpolation to improve maps and datasets of population distributions for areas where good census data were not 
available. 

In 2001, Lo explored the use of night light imagery as a possible data source of population estimates at the 
provincial, country, and city levels in the People’s Republic of China (PRC). Using the allometric growth model, 
and with the light area or light volume as inputs, the study found that night light data from the United States 
Air Force Defense Meteorological Satellite Program Operational Line System (DMSP-OLS) rendered reasonably 
accurate estimates of urban or nonagricultural population at both the county and city levels. Lo deduced that 
the 1  km resolution, radiance-calibrated night light image from the DMSP-OLS had the potential to provide 
population estimates of a country, particularly its urban population. Amaral et al. (2006) conducted a similar 
study for the Brazilian Amazon to estimate the size of nonagricultural populations. 

Figure 3.5: How Neural Network Filters Detect Vertical and Horizontal Lines

Source: Graphics generated by the study team based on You Tube videos by 3blue1brown entitled “But what is a Neural
Network? | Deep learning chapter 1”; and Deeplizard entitled “Convolutional Neural Networks (CNN) explained”.
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Regression models to calibrate the sum of lights with official measures of economic activity were developed by 
Ghosh et al. (2010) for subnational levels of India, Mexico, the PRC, and the United States, and for the national 
level of other countries. Spatially disaggregated 1 km maps of total economic activity and estimates were generated 
by unique coefficients that were applied to night light data. 

Akiyama (2012) studied the use of DMSP-OLS images and the impact of roads on intensity of lights in Japan. 
Multiple regression analyses showed that the effect of buildings was strong in rural areas, while road distribution 
was strong in urban and suburban areas. Images of intensity of lights were developed by Akiyama using the 
results of regression analysis and these were compared with the actual image of light intensity. Results of the 
study showed the tendency of estimated spatial distribution of intensity of light agreed well with the tendency of  
DMSP/OLS images.

Meanwhile, Yao’s 2012 paper set up the connection between combined population and gross domestic product 
factors with light brightness of DMSP-OLS images, using an allometric model at the prefecture-level cities of 
the PRC.

It was noted by Ghosh et al. (2013) that the proxy measures described by Yao were appealing due to lower 
acquisition costs, images being available globally, and the validity of the methodology. 

Zhou and Ma (2015) later found that night light data can provide comprehensive information on economic 
inequality at various levels not accessible through traditional statistical sources. 

There are, however, a number of studies that point to the unreliability of DMSP-OLS images in providing good 
metrics for economic activity in certain areas. 

Chen et al. (2010, 2011) concluded that luminosity had little value for countries with high-quality statistical 
systems, while it was more useful for countries with low statistical grades, specifically war-torn countries with no 
recent population or economic censuses. The study indicated that luminosity could add more value for economic 
density estimates than for time series growth rates.

The study of Mellander (2013) found that economic activity, particularly estimated by wages, was slightly 
overestimated in big urban areas and underestimated in rural areas. 

Addison et al. (2015) stated that DMSP-OLS data were quite noisy, caused growth elasticities of night lights with 
respect to most socioeconomic variables that are low, were unstable over time, and had little explanatory power. 
The study further noted that DMSP nighttime images could serve as a proxy for electricity consumption measured 
in 10-year intervals.

3.4	� Using a Convolutional Neural Network and Ridge Regression  
for Predicting Poverty

It is important to understand the detailed implementation of the study’s methodology to predict poverty in 
Thailand. This methodology follows the work of Jean et al. and is outlined in the road map presented in Figure 3.6.

There were three main steps implemented in training the CNN to predict poverty.

The first step involved training the algorithm to predict night light data using daytime satellite images as input—
these images are available at more granular levels and therefore meet the high-volume data requirement for training 
a machine learning algorithm. The CNN then detected features from the daytime images that can be associated 
with socioeconomic development, while in the process of learning to predict night light intensity. The mean of 
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Figure 3.6: Road Map of the Methodology for Predicting Poverty Using Satellite Imagery

Notes: The procedure requires three types of data: poverty statistics disaggregated geographically, high-resolution daytime 
satellite imagery, and images of earth at night. Step 1 involves the preprocessing and cleaning of these data. Step 2 trains an 
algorithm to classify (daytime) satellite images into different classes of intensity of night lights. Step 3 extracts the image 
features of the last layer from the trained algorithm. In Step 4, the image features are averaged so the spaces enclosed in grids 
are consistent with the level at which poverty-labelled images are available. These are regressed using the survey target variable 
to find the relationship between features and the target variable. Step 5 summarizes the full pipeline from image to the target 
variable (as indicated in Steps 2–4).
Source: Graphics generated by the study team.

the specific information extracted from the images was taken to be consistent with the available level of the 
government-published estimates.

The second step entailed setting aside the prediction of night light intensity. The trained CNN was used as a 
function that summarized the complex multidimensional input image data into a single vector. The vector had 
more than 500 elements or “features”, which represented what the CNN detected on the image. There are many 
advantages of using these features over raw pixel values, including the ability to scan the convolutional layers over 
the image with the use of kernels, so the location of the features on the image does not matter. The grid-based 
image features were then combined with the ground-truth poverty data by taking the average value of each feature 
within the given government-published estimates. 

The third and final training step used ridge regressions to observe the relationship between the image features and 
the ground-truth poverty data. 
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Setting Up the Data

Daytime Satellite Imagery. The first of the three primary data requirements of the methodology used in this study 
is a large set of high-resolution satellite images. 

Satellite images are obtained from earth-observing systems. In general, the three main types of these systems, 
based on the altitude of their orbit, are geostationary (GEO) satellites, low Earth orbit (LEO) satellites, and medium 
Earth orbit satellites (ADB 2020). 

GEO satellites stay positioned over the same spot on the Earth, with a highest altitude of about 36,000 km. This 
enables them to have greater Earth surface coverage, but with an increasingly skewed pixel towards the edge of 
the sensor coverage. GEO satellites were originally designed for meteorological use. An example of such a satellite 
is the HIMAWARI-8, which is positioned over Indonesia and can cover half the globe, having the highest spatial 
resolution of 500 meters (m) with images taken at 10-minute intervals (ADB 2020).

LEO satellites are positioned relatively close to the Earth’s surface at an altitude of 400 km to 800 km. These 
satellites can complete their rotation around the earth in about 90 minutes as they travel through a fixed orbit at 
around 28,000 km per hour. LEO satellites have wider coverage toward the poles, instead of at the equator. Being 
closer to earth allows these satellites to have higher spatial resolution. The resolution of LEO satellites can be 
as high as 30 centimeters per pixel for captured images in black and white or panchromatic, while commercially 
available images in color or multispectral bands can have about 1 m per pixel. Some popular publicly available LEO 
sensors are the Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat; with spatial resolutions of 
250 m, 500 m, and 1000 m for MODIS, and 30 m for Landsat. These sensors have data applications that are well 
documented and have been covered by peer-reviewed literature. Meanwhile, the Sentinel-2A and 2B satellites, 
operated by the European Satellite Agency, have spatial resolutions of 10 m to 60 m, depending on the band 
(ADB 2020).

Medium earth orbit satellites are commonly used on navigation, communication, and geodetic or space satellites. 
They are positioned at approximately 20,000 km above the Earth, between GEO and LEO satellites.

All advanced satellites are equipped with a multitude of sensors for various types of earth observations. An example 
of a satellite with the largest number of spectral bands among its kind is the Landsat 8 satellite, with 11 bands that 
are all used for specific purposes (Table 3.2).

In this study, publicly available images from Landsat 8 (with 15 m resolution after pansharpening) and Sentinel 2 
(with 10 m resolution) were used (when conducting similar studies, it is recommended that NSOs initially use 
publicly accessible images to optimize resources). The use of these images helped to also assess whether the 
approach of Jean et al. would still deliver reliable results, despite differences in image resolution. Image files from 
both Landsat 8 and Sentinel 2 were georeferenced, tagged, and stored as three-dimensional arrays, with each pixel 
represented in red, green, and blue (RGB) color bands, as shown in Figure 3.7.

In identifying which specific area an image belonged to, its center was used as reference point.

Landsat data were used for 2013, while Sentinel data were used for later years. For 2015, images from October 
1, 2015 to December 31, 2016 were used. This was because Sentinel images were available only from October 
2015 and, due to climatic conditions in Thailand, three months of data would not suffice to create a full country 
composite with little cloudiness. 

For Landsat 8 data, images with 256 pixels x 256 pixels were used. These resulted in a grid size of 3,840 m  
(256 pixels x 15 m per pixel) at the equator. For data taken from Sentinel 2, images with 384 pixels x 384 pixels were 



Mapping the Spatial Distribution of Poverty Using Satellite Imagery in Thailand20

Table 3.2: Uses of Landsat 8 Spectral Bands

Band Wavelength Purpose
Band 1—coastal aerosol 0.43–0.45 Coastal and aerosol studies. 
Band 2—blue 0.45–0.51 Bathymetric mapping, distinguishing soil from vegetation 

and deciduous from coniferous vegetation. 
Band 3—green 0.53–0.59 Emphasizes peak vegetation, which is useful for 

assessing plant vigor. Total suspended matter in water 
bodies. 

Band 4—red 0.64–0.67 Discriminates vegetation spectral slopes; also measures 
the primary photosynthetic pigment in plants (terrestrial 
and aquatic) : chlorophyll-a. 

Band 5—Near Infrared 0.85-0.88 Emphasizes biomass content and shorelines. 
Band 6—Short-wave Infrared 1 1.57–1.65 Discriminates moisture content of soil and vegetation; 

penetrates thin clouds.
Band 7—Short-wave Infrared 2 2.11–2.29 Improved moisture content of soil and vegetation and 

thin cloud penetration. 
Band 8—Panchromatic 0.50–0.68 15-meter resolution, sharper image definition.
Band 9—Cirrus 1.36–1.38 Improved detection of cirrus cloud contamination.
Band 10—Thermal Infrared Sensor 1 10.60–11.19 100-meter resolution, thermal mapping and estimated 

soil moisture.
Band 11—Thermal Infrared Sensor 2 11.5–12.51 100-meter resolution, improved thermal mapping and 

estimated soil moisture.

Source: United Nations. 2017. Earth Observations for Official Statistics: Satellite Imagery and Geospatial Data Task Team Report.

Figure 3.7: Image Color Bands within a Georeferenced Image File

Note: These images were taken over Thailand (longitude:384.3840, latitude: 13.000004). 
Source: Sentinel 2 satellite.

used to create a consistent grid for all years. The two approaches resulted in 36,000 images for Thailand. Smaller 
images were tested, but the CNN did not perform well. 

The first intermediate step to prepare the satellite images was collecting cloud-free daytime images. An algorithm 
was used to choose the daytime images within acceptable parameters of cloudiness or cloud cover for the period 
covered by the study. The goal for the cloudiness threshold, which was ascertained through experimentation, was 
to produce a composite image for the entire country with the least amount of cloud cover. 
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The second intermediate step to prepare the images was pansharpening to enhance the resolution of the 
Landsat 8 images. Pansharpening produces a single high-resolution, color, multiband RGB image by combining 
high-resolution panchromatic images (black and white but sensitive to colors) with lower-resolution, multispectral 
band images (Figure 3.8). This is achieved by increasing the pixel-per-unit area of the multispectral band RGB 
image, transforming the RGB color scheme into a hue saturation value, and changing the value to the pixel intensity 
of the panchromatic image. The original Landsat images with 30 m resolution were converted to 15 m resolution 
after pansharpening (Hofer et al. 2020).

During the CNN training process, several validation checks were also done, including isolation of images that 
rendered the highest loss, to prevent contamination of the input dataset. High levels of loss indicate that the training 
process is doing well in detecting appropriate features in the satellite images, when no prior events occur. Figure 3.9 
shows examples of images with highest prediction loss. These images are very cloudy, with no recognizable land 
or urban areas, which could render the model inaccurate in predicting class and training incorrect features. Such 
images were caused either by weather disturbance or technical problems with the sensor’s camera, and were 
isolated from further training. 

Figure 3.8: Pansharpening Images to Improve Their Resolution

Note: These images were taken over Pueai Noi, Pueai Noi District, Thailand. 
Source: Google Earth Engine.

Low Resolution  
Multiband Image

Low Resolution 
Panchromatic Image

Resulting Pansharpened 
Multiband Image
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As mentioned, training a CNN requires huge amounts of data to mitigate imbalanced classes and arrive at a 
model that generalizes better. Data augmentation is one way of increasing samples of daytime images. The initial 
preparations for this study indicated that augmentation was required to avoid significant overfitting (where 
the model loses its generalizability outside the training dataset) of the models (Hofer et al. 2020). Vertical and 
horizontal flipping, random lighting and contrast change within a 10% probability, and dihedral and symmetric 
warping were applied to enhance the small datasets. These techniques were used due to their suitability to  
remote-sensing images.

Earth Engine is a tool developed by Google that features a multipetabyte catalogue of satellite imagery and 
geospatial datasets. It has planetary-scale analysis capabilities running on Google’s servers. Earth Engine 
was used in most of the data preparation steps for this study. For cropping images and converting them into 
appropriate data formats, a translator library for raster and vector geospatial data formats, called Geospatial Data  
Abstraction Library, was used (ADB 2020). 

Data on Night Lights. Data on night light intensity were taken from the Visible Infrared Imaging Radiometer Suite 
(VIIRS), which provides publicly accessible earth observation images at night for the entire globe (Figure 3.10). 
The cloud-free average radiance value was processed to filter out fires, other ephemeral events, and background, 
while values for unlit areas were set to zero (ADB 2020). 

To align with the goal of providing Thai poverty statistics pertaining to specific years, custom year composites 
were generated from published monthly composite images published by VIIRS. In minimizing the effect of  
outliers, the median of monthly values was calculated. Further data processing was done to ensure consistency 
of the resolution of night light data with the daytime satellite imagery in preparation for the CNN modelling 
(ADB 2020). 

For a more effective training of the CNN model, actual values of intensity of lights were batched into discrete 
groups. Similarly, a Gaussian mixture model (GMM) for clustering the values of night light intensity was applied. 
The GMM assumes that the night light intensity distribution comes from the mixture of k underlying Gaussian or 
Normal distributions (ADB 2020). A histogram of the radiance values was evaluated to arrive at the set of Normal 
distributions that best fit the data (Table 3.3). 

Figure 3.9: Low-Quality Satellite Images Isolated from Algorithm Training

Note: These images were taken over Thailand; from left to right: (longitude: 99.04128, latitude: 14.58559), (longitude: 102.3334, 
latitude: 14.03043), (longitude: 100.2094, latitude: 7.680326). 
Source: Landsat 2 satellite.



Tapping Computer Vision Algorithms for Predicting Poverty Rates 23

Figure 3.10: Examples of Nighttime Light Images

Note: These images show the annual composite distribution of night lights in Thailand.
Source: Visible Infrared Radiometer Suite.

2013 2015 2017

Table 3.3: Nighttime Light Clusters

Year Type
Class 1 

Condition
Class 2 

Condition
Class 3 

Condition
2013 GMM nl <= 0.2079 1.366 > nl > 0.2079 nl >= 1.366
2015 GMM nl <= 0.38148 2.26 >= nl >= 0.38418 nl >= 2.26
2017 GMM nl <= 0.478 2.1349 >= nl >= 0.478 nl >= 2.1349

GMM = Gaussian mixture model, nl= night lights.
Source: Calculations generated by the study team.

Poverty Statistics. The third data requirement for this study was an indicator of economic well-being. The National 
Statistical Office of Thailand (NSO) uses the small area estimation (SAE) method based on the poverty-mapping 
technique developed by Elbers, Lanjouw, and Lanjouw, and popularized by the World Bank. This technique  
matches covariates that are common in both household survey and census datasets. The income or expenditure 
models developed from the survey data and applied to census data to generate predicted values of income or 
expenditure. These predicted values are then compared with official poverty thresholds to calculate for poverty 
indicators at detailed geographic levels (ADB 2020). Small area poverty estimates, available for more than 
7000 tambons in Thailand for 2013 and 2015, were used for this study.

From this point forward, these small area estimates will be referred to as government-published estimates. 
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3.5	 Optimizing the Convolutional Neural Network

To ensure that the algorithm would be readily capable of identifying simple features, a packaged CNN (ResNet34), 
which had been pretrained on the ImageNet database, was used instead of developing a new CNN algorithm. 
Steps were then taken to train the deeper layers of the CNN to recognize the more complex features of satellite 
imagery as preparation for predicting night light intensity and eventually poverty (ADB 2020).

In the training process, various CNN specifications were implemented to arrive at an optimal network structure. 
The CNN’s structure was improved by testing different combinations of network parameters. The number of 
epochs was optimized. Figure 3.11 shows the loss function or how accurately the CNN predicted the intensity of 
night lights. The y-axis indicates the loss for one epoch, while the x-axis refers to the number of images the model 
had been trained on. The blue line corresponds to the loss of the training dataset, while the yellow line shows the 
validation set.

Figure 3.11: Loss Function

Source: Graphics generated by the study team.
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The model with the highest weights after the most successful series of epochs was used to minimize validation 
loss. An algorithm was applied that automatically monitored and saved the weights when an improvement was 
observed. After the epoch ended and improvement was no longer observed, the weights were not saved. The 
model was instead checked for overfitting. Overfitting occurs when training loss becomes significantly smaller than 
the validation loss, or when the validation loss stops decreasing.

The use of a pretrained CNN required replacing the last two layers (usually assigned for prediction) with a training 
model designed to predict the desired outcomes of the Thai datasets. This is the process of transfer learning.

When training the CNN model, this study used a “cyclical learning rates” approach. This avoided having to use 
trial and error to find the optimal values and schedule of global learning rates. These rates are important since 
they indicate the adjustments needed for parameters to decrease the loss function. The approach entailed varying 
within a set learning rate boundary instead of changing for each layer, since this requires fewer iterations and attains 
an improved classification accuracy without the need to tune.
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The range of the learning rate was determined by evaluating the plot of the learning rate with the loss  
(Figures 3.12a and 3.12b).

To avoid increasing losses, a learning range was chosen from the smallest loss (1e-06) until it reached the 
point where the line began to rise (1e-03). Given three layers in a network, the learning range indicated that 
the first layer would train at a learning rate of 1e-06, the second at 1e-05, and the last at 1e-04. The layers of 
a network are usually divided by frameworks into groups, then trained at various learning rates. This approach 
of implementing different learning rates in different parts of a neural network is called discriminative  
learning. 

Another option is to pick a learning rate range before the value of the minimum loss. Using the illustration in 
Figure 3.12b, the range between the loss still decreasing or values within 1e-02 and 1e-01. This can be used to train 
the final layer of the CNN.

To further fine-tune the training process, a confusion matrix, which indicates the number of correct and inaccurate 
predictions, was monitored and an appropriate loss function was used to lessen imbalanced prediction classes 
(ADB 2020). Two examples of confusion matrixes—with and without a weighted cross entropy loss function—
are shown in Tables 3.4a and 3.4b. The number of images to be classified is on the y-axis, while the number of 
images predicted by the CNN is on the x-axis. Images that lie on the main diagonal were accurately predicted, while 
those that lie farther from the diagonal indicate a high prediction error. The classes are ordinal, with the first group 
indicating low night light intensity and the third pertaining to high night light intensity. A weighted cross entropy 
loss function was chosen because it prevents the model from always predicting low night light classes based  
on weights (ADB 2020). 

With the training complete, an application programming interface called Fastai, which is built on PyTorch,  
was used to implement the CNN. Both Fastai and PyTorch are deep learning libraries with high-level components 
that can easily provide state-of-the-art functionality in standard deep learning domains, as well as low-level 

Figure 3.12a: Learning Rate Plot  
against Loss Option 1

Figure 3.12b: Learning Rate Plot  
against Loss Option 2

Source: Graphics generated by the study team.
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Table 3.4a: Sample Confusion Matrix  
with Weighted Cross Entropy Loss

    Predicted
  1 2 3

A
ct

ua
l

1 1,299 24 2

2 36 32 6

3 4 12 21

Table 3.4b: Sample Confusion Matrix  
without Weighted Cross Entropy Loss

    Predicted
  1 2 3

A
ct

ua
l

1 2,384 9 2

2 92 29 7

3 14 11 30

Source: Calculations generated by the study team. Source: Calculations generated by the study team.

components that can be mixed and matched to build new approaches. PyTorch was developed by Facebook’s 
AI Research lab and has the major advantage of being a free and open-source software solution. 

From the last layer of the CNN, 512 features were extracted and a sample is presented in Figure 3.13.

Figure 3.13: Examples of Features Extracted from the Convolutional Neural Network

Note: These images were taken over Thailand; from upper left to bottom right: (longitude: 384.3840, latitude: 13.000001); 
longitude: 384.3840, latitude: 13.000004); longitude: 384.3840, latitude: 13.000011); longitude: 384.3840, latitude: 13.000013). 
Source: Sentinel 2 satellite.
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3.6	� Extracting Features from the Convolutional Neural Network’s  
Output Layer 

After the CNN was implemented, the satellite image features that were used in predicting night light intensity 
were extracted. Figure 3.14 shows how such features are viewed numerically by the CNN as complex mathematical 
functions.

The mean of these mathematical functions was then taken and aggregated at the same geographic level as the 
government-published poverty estimates, i.e., the tambon-level data were aggregated for 2013, 2015, and 2017.

3.7	� Using Ridge Regression to Translate Neural Network Features  
into Poverty Predictions

The next step entailed regressing poverty rates on the aggregated data. 

This study evaluated the feasibility of using the ordinary least squares (OLS) regression method, which tends to 
find the best linear unbiased estimator. OLS finds parameters that best fit a given estimation sample, uses every 
covariate, and blends them linearly. As the number of covariates gets large, OLS finds parameters that fit data 
almost perfectly, but it often fails to predict additional data. Aside from finding the underlying relationship between 
covariates and the data, having too many parameters can generate some of the noise that leads to poor predictive 
performance.

Figure 3.14: Extracting a Convolutional Neural Network’s Output Layer

Note: These images were taken over Thailand; from upper left to bottom right: (longitude: 384.3840, latitude: 13.000001); 
longitude: 384.3840, latitude: 13.000004); longitude: 384.3840, latitude: 13.000011); longitude: 384.3840, latitude: 13.000013).
Source: Sentinel 2 satellite.

Grid images Grid image features Aggregated feature average
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Ridge regression, on the other hand, is a good alternative to OLS because it corrects the noise issues by shrinking 
unimportant covariates to zero. In this study, ridge regression was used, where the resulting parameters were applied 
to satellite image tiles with 4 km resolution to provide more grid-level estimates of poverty. It should be noted 
that, of 7,255 tambons, 90% were randomly set aside to comprise the previous sections, while 10% comprised the 
validation set used solely for checking the performance of predictions. This is in addition to the separate validation 
of both the CNN and the ridge regression, which used 10-fold cross-validation to tune hyperparameters and 
measure performance.
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4 �Using Random Forest Estimation  
to Compile Grid-Level Estimates  
of Poverty Head Counts

The first step in estimating the number of poor people in a given area is to come up with grid-level estimates of 
the poverty head count. 

For this study, these estimates were achieved through multiplying the poverty rates derived from the CNN ridge 
regression by grid-level population sizes. Tambon-level population data from the Population and Housing Census, 
conducted by the NSO, were used. The natural logarithm of the population density was taken to be the response 
variable for estimating the population density at the grid-level, based on the 2015 paper of Stevens et al., whose 
study concluded that the natural logarithm has the highest prediction accuracy. 

In forecasting the levels of population density, its growth was used as the dependent variable. Population 
distribution is typically highly correlated with certain types of land cover. GlobCover 2009 was used to integrate 
land cover information—the same source of land cover data as used by Stevens et al. (2015). GlobCover is a 
publicly accessible global land cover map based on the Environmental Satellite’s (ENVISAT) Medium Resolution 
Imaging Spectrometer, which counts 22 land cover classes defined in the United Nations Land Cover Classification 
System. All 22 of these land cover classes are available in Thailand. The spatial resolution of land cover images 
available is approximately 300 m.

The land cover data were complemented by digital elevation data and its derived slope estimate from HydroSHEDS; 
net primary production data derived from MODIS; monthly data on precipitation and temperature from WorldClim; 
night light data from VIIRS; data on different features such as villages, schools, and rivers form OpenStreetMap; 
and data on protected areas from Protected Planet.

The appendix to this report provides a list of input data used for estimating population density on the 100 m x 
100 m grid-level. It should be noted, however, that most input data have a constant resolution in degrees, so the 
resolution in meters changes with the distance to equator. The resolutions shown in the appendix correspond to 
the approximate resolutions near the equator.

The data needed to be converted into the same raster format before a population estimation could be applied. 
Vector data were rasterized—convert all points, lines, and polygons of the vector data to a raster format—while the 
projection, resolution, and origin of the raster files were made consistent. 

Two estimation approaches were assessed for forecasting population density in this study: random forest estimation 
and Bayesian model averaging (BMA).

Random forest is an ensemble method based on regression trees. Each tree is built on a random subset of training 
data and another subset of independent variables. The independent variable in this case is the number of people 
living in each 100 m x 100 m grid cell and the independent variables consist of data on night lights, land cover 
classes, temperature, and precipitation. The random subset of training data is drawn with replacement (Cutler et al. 
2012). To create a random forest, the regression trees go through recursive binary splitting, where each tree divides 
the predictor space in a series of binary splits based on individual covariates. Root nodes include the predictor 
space, while the nodes that are not split further into descendant nodes are called terminal nodes. The splitting 
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Figure 4.1: Random Forest of Classification Trees and Random Forest of Regression Trees

Source: Towards Data Science website.
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criterion in regression trees is determined by the mean squared error of the predictions of descendant nodes. 
Splitting is done until a predetermined size of maximal tree is reached or a predefined optimal split is achieved. The 
unweighted average of all individual trees leads to a random forest prediction. Figure 4.1 illustrates a random forest 
of classification trees and a random forest of regression trees.

BMA, on the other hand, applies the Bayesian inference in model selection. As an ensemble learning method, 
it evaluates the explanatory power and weights of the covariates of a large number of models. BMA considers 
the both model and covariate uncertainty. Using Bayes’ theorem, it models parameter uncertainty through 
prior distribution, and obtains posterior parameters and model posteriors that allow direct model selection, 
combined estimation, and prediction (Fragoso et al. 2015). Weights are used to gauge the relative importance 
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of the covariates included in the model in explaining the dependent variable and the explanatory power of  
the models. 

In estimating population growth rates, a linear regression containing a column vector that includes population 
growth rate as the dependent variable, a matrix of columns of each explanatory variable, and a vector of parameters 
corresponding to the independent variables are used. The explanatory variables include all covariates used to 
estimate the grid-level population density and the initial population in absolute numbers and logarithmic form. 
Sets of linear regression models are estimated to apply BMA, considering all models that can be built from 
combinations of the independent covariates. These models are assessed by BMA according to their capacity to 
explain the dependent variable and corresponding weights are assigned. 

BMA is applied to estimate the posterior model probabilities and the posterior distributions of the coefficients 
once the priors are set. One of the challenges in evaluating the models is the high number of model space given by 
BMA. A solution to this is the Markov chain Monte Carlo model composition (MC3), which would allow evaluations 
of the subsets of the model space (Cuaresma et al. 2013). This study used the random walk MC3 search algorithm 
in evaluating the set of potential models.

Country-specific data were matched to GIS-delineated administrative boundaries for the tambons to estimate 
grid-level population size. The log population density from census data was used as the response variable, while 
covariates were taken from geospatial data in the random forest model. Choosing possible covariates was based on 
available literature and, since many studies indicated that land cover types were usually correlated with population 
distribution, land cover class was included in the model. Figure 4.2 shows this relationship for 2015. Land cover 
class showing artificial surfaces and associated areas is shown in the left panel of the figure, while a map of the 
estimates of grid-level population density in Bangkok is on the right. Yellow portions on the map indicate relatively 
high population density, while the purple portions indicate relatively low population density.

The random forest approach was selected as the modelling framework for this study, due to its various advantages. 
It can deal with huge sets of explanatory data. It also handles both collinearity and nonlinearity, dealing with 
correlations between input data and independent variables as well as the nonlinear relationship of a dependent 

Figure 4.2: Artificial Surfaces and Associated Areas versus Population Density  
in Bangkok, 2015

Source: Calculations generated by the study team.
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variable and covariates. Random forest estimation reasonably controls variance and bias in a model. It is also 
resistant to overfitting, whereby it can handle a very large volume of training data, arriving at a model that will reflect 
the dynamics of the training information and make correct predictions with new input data. Random forest can 
produce measures of variable importance automatically, identifying which covariates are most vital in obtaining 
accurate results (ADB 2020). 

Figure 4.3 illustrates the estimated population densities in Bangkok for 2013, 2015, and 2017. The population 
density for every 100 m x 100 m grid of Bangkok was predicted using the same approach. The estimated population 
density was simply multiplied by its respective land area to estimate the population counts.

Once the grid-level population estimates were prepared, the poverty head counts were estimated. It was assumed, 
however, that the poverty rate was the same within each 2 km x 2 km grid, since the size of the grid for poverty 
estimates was bigger than the size of the grid for population counts.

Figure 4.3: Random Forest Prediction of Population Density in Bangkok

m = meter
Source: Calculations generated by the study team.
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5 Key Findings

The first step in predicting poverty using geospatial data involved training a CNN model to predict the intensity 
of night lights through the use of daytime images. Table 5.1 contains the estimates of prediction accuracy 

which were derived from the confusion matrixes calculated from the predictions of the CNN’s final layer, with the 
number of satellite images indicated inside each cell of the table. 

The overall prediction accuracy was calculated by dividing the number of images accurately predicted by the total 
number of images across rows. The results imply that the CNN did well in correctly predicting lower levels of night 
light intensity for all years covered in the study.

Table 5.1: Prediction Accuracy of Convolutional Neural Network 

Data Set 2013 2015 2017
Validation set 85.79 85.22 86.43

Full data set 86.52 87.28 86.98

Source: Calculations generated by the study team.

Validation processes were performed to assess the poverty rates predicted from ridge regression, including the 
root mean square error (RMSE) calculated at the tambon level. Since the poverty predictions are at the grid-level, 
the weighted mean of the grid-level poverty estimates was taken, using gridded population estimates as weights in 
each city or tambon. There were low average prediction errors as shown in Table 5.2.

Table 5.2: Root Mean Square Error by Year 
(%)

Year Validation Set All
2013 12 11
2015 4 5
2017 3 3

Source: Calculations generated by the study team.

Creating scatter plots was another validation process conducted. In the scatter plot shown in Figure 5.1, each dot 
corresponds to one city or tambon. The nearer a point is to the dashed 45-degree line, the better the prediction. The 
x-axis shows the government-published estimates, while the y-axis has the machine learning based predictions. 
Yellow dots contain the training set, while red dots are from the validation set. This scatter plot shows overall fit and 
dispersion cluster among other patterns. 

It can be seen from the numbers in Figure 5.1 that the machine learning method does not perform well in predicting 
higher poverty rates in Thailand, despite it having low RMSE values.
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The study examined the algorithm’s predictive performance by evaluating how far the predicted estimates deviated 
from the government-published estimates. 

Apart from numerical assessments, the spatial distribution of the estimated rates was also evaluated. Figure 5.2 
shows the poverty maps where the poverty rates predicted by machine learning are illustrated at the 4 km x 
4 km grid-level.

As shown in these poverty maps, the machine learning prediction at the grid-level simulated the spatial distribution 
of the government-published rates. For areas where the published estimates were lower or higher relative to other 
areas, the machine learning estimates showed the same pattern. Areas with very high levels of poverty, as published 
by the government, tended to be underestimated in the machine learning method. 

Figure 5.1: Scatter Plots of Published and Predicted Poverty Rates

THA = Thailand.
Notes: The x-axis contains the government-published poverty estimates for each year specified, while the y–axis shows the 
predictions based on the machine learning model for those same years. The yellow dots represent the training set, while the red 
dots denote the validation set.
Source: Calculations generated by the study team.
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Box: Does the Algorithm’s Prediction Accuracy Improve When the Indicator  
Has More Variability?

Metrics related to income poverty rates were considered to test the hypothesis that a lack of variability in the distribution 
of government-published poverty estimates affected the prediction accuracy of the algorithm used for Thailand 

(ADB 2020; Hofer et al. 2020).

The multidimensional poverty index (MPI) and the proportion of households with ownership of durable goods and  
different types of assets were considered. The MPI by tambon level is compiled by the National Economic and Social 
Development Council of Thailand, adopting the methodology used by the Oxford Poverty and Human Development 
Initiative (Alkire et al. 2019). The estimates of ownership of assets and durable goods by province were derived from the 
results of the 2015 Household Socioeconomic Survey conducted by the National Statistical Office of Thailand.

The figure below shows that the variability of the MPI estimates is comparable with that of income poverty. The individual 
distributions measuring the ownership of assets and durable goods—such as refrigerators, mobile phones, cars, washing 
machines, big-screen televisions, houses made of light materials, and house and lot—have larger variability.

Plots of Multidimensional Poverty Index and Asset Ownership

LED = light-emitting diode, MPI = multidimensional poverty index, Ref = refrigerator, TV = television.
Source: Calculations generated by the study team.

The data was regressed on the MPI and asset ownership, instead of estimating a ridge regression model for income poverty 
rates. The root mean square error to summarize the predictive performance of the model is in the table below. These results 
imply that the predictive performance was better when the variable had a reasonable amount of variation.

Root Mean Square Error of Ridge Regression, by Indicator
Indicator Validation Set (%) All (%)
Income poverty rate 4.55 4.72
Multidimensional poverty index 3.88 3.92
% of households owning cellphones 1.91 1.89
% of households owning a refrigerator 4.79 4.76
% of households owning house & lot 9.42 9.28
% of households owning a television 8.46 8.34
% of households owning a washing machine 9.87 9.77
% of households with a dwelling made of light materials 10.68 10.55
% of households owning a car 4.76 4.69

Source: Calculations generated by the study team.
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Figure 5.2: Maps of Published and Predicted Poverty Rates
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Note: The images present the machine learning estimates of poverty rates for every (approximately) 4 km x 4 km grid in the 
first column, while the second column shows the tambon-level poverty rates compiled by the National Economic and Social 
Development Council.
Source: Calculations generated by the study team.
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5.1	 Comparing Averaged Features versus Averaged Outputs

Two approaches were considered in deriving poverty rates at the level of the government-published estimates of 
poverty. The first approach used ridge regression training, where the averaged feature vectors were regressed on 
poverty rates. The resulting model was also used to predict government-level poverty estimates using “in sample” 
for training and “out of sample” for the validation set. The second approach entailed the use of the trained ridge 
parameters on the image-level features to estimate image-level poverty rates. These were aggregated to the 
government-published estimates while controlling for the gridded population.4 Table 5.3 compares the results of 
the two approaches by examining the RMSEs of averaged features and averaged outputs. It shows that both arrive 
at similar results. This implies that improving the ridge fit can improve the quality of the image-level estimates.5 

Table 5.3: Root Mean Square Error of Averaged Features and Averaged Outputs 
(%)

Year Averaged Features Averaged Outputs
2013 12.12 12.27
2015 4.36 5.22
2017 3.13 4.55

Source: Calculations generated by the study team.

5.2	 Validating Image-Level Estimates

Validation of estimates requires ground-truth data on the image-level or grid-level poverty rates, but such data 
were not available at the time of this study. The aggregation of features and its effect on predictive performance 
also needed to be examined. Areas that contained only a single image were used to generate insights on these 
concerns. This aimed to eliminate the need for aggregation prior to ridge regression and validation. There were 
single-image areas trained and validated for 2015. Results from ridge regression were considered final predictions 
of the grid-level estimates as shown in Figure 5.3. It provides estimates for the number of poor, based on the small 
single-image-per-area regression on log and regular scales. 

The results from using the full set of regions compared to the error rates of the model using small areas are bigger. 
The same result was observed when the parameters were applied to all regions as with the subset of small regions. 
A probable explanation is the trade-off between sample size and the number of images to aggregate. 

4	 Grid-level population were estimated separately following the method of Stevens et al. 
5	 For further studies, the results of a Landsat-based model and Sentinel-based data on the same ground truth can be compared while the results 

using the same year and satellite images in CNN in smaller and larger areas may also be done.
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Figure 5.3: Scatter Plot of Poverty Rates Based on Single-Image-per-Area

coef = coefficients, OLS = ordinary least square, RMSE = root mean square error, THA = Thailand.
Note: Image level number of poor for areas with only a single image. Plots are predicted using ridge regression that uses only 
single-image areas as input. 
Source: Calculations and graphics generated by the study team.
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5.3	 Comparing Results with a Simpler Model

Does the use of satellite imagery and deep learning methods fare well when compared to a simpler model? To 
answer the question, the government-published poverty rates were regressed on the average night light intensity 
and an intercept using the ordinary least squares method. The results are shown in Tables 5.4 and 5.5.

Table 5.4: Root Mean Square Error for Poverty Rate (Validation), Tambon Level 
(%)

Year Deep Learning Simple Model
2013 12.12 14.69
2015 4.36 3.96
2017 3.13 5.51

Source: Calculations generated by the study team.

Table 5.5: Root Mean Square Error for Poverty Head Count (Validation), Tambon Level 
(%)

Year Deep Learning Simple Model
2013 3,833 1,615
2015 584 662
2017 635 649

Source: Calculations generated by the study team.

The approach using satellite imagery and deep learning methods performed better than the simple model. An 
exception was that the deep learning estimates for 2013 produced larger errors than the night light approach for 
the image-level data and the reaggregation of image-level estimates. This means that images from Sentinel 2 are 
preferred over those from Landsat, implying that the machine learning approach is more sensitive to high-quality 
input data. 

Figure 5.4 shows the scatter plot of the government-published poverty rates and the predictions from the simple 
model for 2013, while Figure 5.5 shows the scatter plot of predictions from the deep learning methods and those 
from the simple model for the same year. It can be seen that the approach using of night light intensity fails to 
predict higher poverty rates. One possible reason is that there are more tambons with low poverty rates exceeding 
20%. A lack of variability in the poverty data may have contributed to the algorithm’s underestimation of Thailand’s 
poverty distribution (ADB 2020; Hofer et al. 2020). 

The clear line at 13% poverty represents areas with no detected night lights. It is shown in Figure 5.4 that the deep 
learning method can go beyond and predict higher poverty rates. The daytime image features do improve the 
predictions in years with good satellite imagery and ground-truth data. 
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Figure 5.4: Scatter Plot of Published and Predicted Poverty Rates, 2013

coef = coefficients, OLS = ordinary least square, RMSE = root mean square error, THA = Thailand 
Note: The predicted values come from a simple OLS regression of average night light intensity in a region on the poverty rate. 
Red dots were in the validation set and were not used to train the parameters.
Source: Calculations generated by the study team.
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Figure 5.5: Scatter Plot of Predicted Poverty Rates and Simple Night Light Intensity, 2013

CNN = convolutional neural network, THA = Thailand.
Note: Red dots were in the validation set and were not used to train the parameters.
Source: Calculations generated by the study team.
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5.4	� Comparing Uncalibrated Machine Learning Poverty Rates  
with Published Poverty Rates

The robustness of the uncalibrated machine learning poverty estimates aggregated at the tambon-level was 
examined. The results indicate that the estimates of the machine learning method were accurate for values 
at the middle of the distribution of the government-published estimates, while the method had a tendency to 
underestimate poverty in areas with high published rates and overestimate in those with low published rates. 

Comparing the machine learning predictions with the government-published estimates for the years 2013, 2015, 
and 2017, the first decile tended to be overestimated, while the 10th decile was underestimated (Figure 5.6). Large 
absolute differences were also noted for those in the 10th decile. 

Figure 5.6: Comparison of Government and Machine Learning Poverty Rates, by Decile

Source: Calculations generated by the study team.
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As Figure 5.7 demonstrates, poverty in the Northeast Region of Thailand was underestimated and had the 
biggest absolute difference in 2013. The Southern Region had the biggest absolute difference in 2015 and was 
underestimated for 2015 and 2017. In 2017, the Northern Region had the biggest absolute difference. For all years, 
poverty in the Central Region was overestimated.

In 2017, the top five poorest tambons, based on the published rates, were Nong Don in the Central Region, Ao Luek 
Tai and Na Pradu in the Southern Region, and Kut Bak and Kut Wa in the Northeast Region—with values ranging 
from 27% to 31%. These tambons had values ranging from 4% to 8% in the uncalibrated machine learning results. 
On the other hand, Khok Yang in the Northeast Region was estimated to have a 7.3% poverty rate by the machine 
learning method, while it had only a 1.1% rate in the published estimates for 2017. 
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5.5	� Harmonizing Machine Learning Poverty Rates  
with Published Poverty Rates

It can be observed that, when the estimates generated via artificial intelligence are aggregated at the same level as 
the government-published rates, they are not exactly the same. Calibration methods can be done to address the 
issue of underestimation. If they provide an accurate picture of poverty at the level the estimates are published, 
machine learning estimates can be calibrated in such a way that the aggregated grid-level estimates by city 
or tambon assume the value of those published by the government (ADB 2020). The process will maintain the 
distributional structure of the grid-level poverty estimates and honor the government-published statistics. This type 
of calibration is attractive to users who want to explore alternative data sources, but who rely on figures released by 
national statistics offices and other government agencies. Since the process of calibration maintains consistency 
between the two datasets, any confusion in choosing between the published and machine learning estimates is 
eliminated for poverty data users. Table 5.6 shows the calibration method of machine learning poverty rates for a  
hypothetical Tambon X, with the corresponding machine learning estimates for four grids within the tambon. 

Figure 5.7: Comparison of Government and Machine Learning Poverty Rates, by Region

Source: Calculations generated by the study team.

0 2 4 6 8 10

South

Northeast

North

Central

South

Northeast

North

Central

Average Absolute Difference
(Government Poverty Rates versus 

Machine Learning Uncalibrated Poverty Rates)

Average Ratio
(Government Poverty Rates and

Machine Learning Uncalibrated Poverty Rates)

0.98 1.00 1.02 1.04 1.06 1.08 1.10

2013 2015 2017 2013 2015 2017

Table 5.6: Calibration of Machine Learning Poverty Rates for Tambon X

Published data  
for Tambon X

Population Size 
(A)

Poverty Rate 
(B)

Poverty  
Head Count 

(A)*(B)
4,000 0.3 1,200    

Machine 
learning data for 
the grids within 
Tambon X

Population Size 
(C)

Poverty Rate 
(D)

Poverty  
Head Count 

(C)*(D)

Calibrated  
Poverty Rate 

[(A)*(B)/
sum(C*D)]*(C*D)/(C)

Recalibrated Poverty  
Head Count 

[(A)*(B)/
sum(C*D)]*(C*D)

Grid # 1 800 0.20 160 0.30 243
Grid # 2 500 0.30 150 0.45 227
Grid # 3 2,250 0.15 338 0.23 512
Grid # 4 450 0.32 144 0.49 218

Source: Calculations generated by the study team.
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Figure 5.8: Calibration of Poverty Maps

Source: Calculations generated by the study team.
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Figure 5.8 illustrates how calibration is done by showing maps of the rates predicted by machine learning, the 
published rates, and the calibrated poverty rates. There may be cases when the calibrated poverty rates do not 
differ significantly from the machine learning predictions, while in some cases the variations may be large. Despite 
these changes in poverty levels, the ranking of tambons in the uncalibrated machine learning method is expected 
to remain the same.

Figure 5.9 illustrates the rescaled rates within the poverty maps of Thailand.

If there are concerns about the reliability of the government-published estimates at the aggregate level, then the 
uncalibrated machine learning estimates may be used for validation. In cases where the differences between the 
uncalibrated estimates and the published rates are minimal, the machine learning estimates can provide increased 

Figure 5.9: Maps of Calibrated Machine Learning Poverty Predictions

Thailand 2013, Calibrated Thailand 2015, Calibrated Thailand 2017, Calibrated
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Note: The images present the calibrated machine learning based estimates of poverty rates for every (approximately) 4 km x 
4 km grid. 
Source: Calculations generated by the study team.
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confidence in the reliability of the government-published rates. Further investigation through interviews with key 
stakeholders or other field validations may be conducted should significant deviations be noted between the 
results of the predicted values and the published estimates. 

This study also generated the number of poor individuals, or the poverty head count, at the grid-level through the 
random forest approach. Figure 5.10 shows the predicted poverty head count for 2013, 2015, and 2017 across every 
4 km x 4 km grid-level.

Figure 5.10: Maps of Calibrated Machine Learning Poverty Head Count

km = kilometer.
Source: Calculations generated by the study team.
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5.6 �Comparing Calibrated Machine Learning Poverty Rates  
with Other Metrics of Poverty

The poverty rates predicted by machine learning at the 4 km x 4 km grid-level were aggregated at the tambon level. 
These were compared to some administrative data compiled by different government offices in Thailand. The 
Basic Minimum Needs (BMN) and the National Rural Development Committee Survey (NRD2C) datasets are 
administered by the Community Development Department (CDD) of the Ministry of Interior. Data are collected 
at the village, subdistrict, district, and provincial levels for both datasets, which provide information on an area’s 
demographic, physical, economic, and social conditions (Jitsuchon et al. 2007). Data collection involves local 
administrations from the villages and covers all villages in the country.

The BMN dataset is collected annually and consists of 37 indicators that cover health, housing, education, 
economy, way of life, and participation in society. It is designed to collect information on the quality of life to assess 
the level of happiness in the society. A structured questionnaire is administered to households by volunteers and 
is supervised by a village committee. The data are processed by the local offices up to the provincial level, then 
aggregated by the CDD board (Jitsuchon et al. 2007). 

The NRD2C, meanwhile, is conducted biannually and is designed to measure the living conditions of people 
residing in rural areas. It consists of 30 indicators that span infrastructure, employment, health, knowledge and 
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education, community strength, and natural resources and the environment. The data are collected through 10 key 
informants and forms are completed by the village-level data collection working group, which is comprised of local 
government officials. Villages are classified into three groups, namely “least developed”, “somewhat developed”, 
and “most developed”. The villages included in the list of poor villages are generally identified as being least 
developed in more than 10 dimensions (Jitsuchon et al. 2007). 

As part of this study, scatter plots were generated and correlation analyses were done to compare the calibrated 
poverty estimates predicted by machine learning with income data and weighted scores for “severity of problems”, 
each from the NRD2C and BMN. For 2013 and 2015, income data from the NRD2C were used, while for 2017 data 
on income from the BMN were used. The scores for the severity of problems on all indicators in the NRD2C were 
summed up per tambon. 

The correlations between the calibrated poverty rates and the NDR2C and BMN indicators were examined to 
evaluate the strength of the relationship between the variables of interest. Correlations for income for all years 
show a negative relationship between poverty rates and income. The correlation between the weighted scores for 
severity of problems encountered by households, albeit relatively weak, implies that as the problems encountered 
increased in severity, the poverty rates also tended to increase.
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6 �Estimating Structural Models  
as an Alternative Method

The focus of this study was to examine the feasibility of using computer vision techniques and satellite imagery 
to predict poverty in Thailand. To some, it may appear as an opaque method, since the specific features the 

computer searches for to make predictions are not certain. It is like teaching a child how to distinguish a cat from a 
dog by showing photos, then leaving the child to figure it out for him or her self. The goal is for the child to correctly 
classify the cat and the dog. 

On the other hand, there are instances where a structural model will be estimated with model coefficients that 
have economic interpretation. In the case of poverty, estimates are not available every year. A structural model 
can be estimated, provided that the data to be correlated with poverty—whether geospatial or not—are regularly 
available, including for years where poverty statistics are not available. If there is sufficient evidence that the model 
coefficients are stable over time, then the structural model can be used to extrapolate poverty data. 

This is a different research objective to that of incorporating satellite imagery as an alternative data source to 
achieve more granularity for years where aggregated poverty data are available. 

In addition to using satellite imagery and a CNN to predict poverty, the study’s researchers conducted an analytical 
exercise where alternative methods of predicting poverty in Thailand were examined. Whereas a CNN is generally 
considered very useful in accurately predicting poverty, concerns have been raised that the structural form of the 
prediction model could be abstract to some extent. 

To address this issue, this study explored alternative methods for identifying specific geospatial covariates that 
correlate well with poverty rates. This approach enables greater understanding of how to better measure poverty 
using innovative data sources. More specifically, the researchers investigated three main questions: (i) to what 
extent can variation in tambon-level poverty rates be explained by variation in the values of the assembled 
geospatial covariates?, (ii) which geospatial covariates are strongly correlated with poverty rates?, and (iii) which 
algorithms perform well in predicting poverty?

Two types of poverty rates were considered in this study: first, tambon-level income poverty rates compiled by the 
National Statistical Office of Thailand (NSO) and National Economic and Social Development Council (NESDC) 
using a small area estimation technique that entailed the combination of Household Socioeconomic Survey and 
Census of Population and Housing data; and second, tambon-level estimates of the prevalence of multidimensional 
poverty, which were compiled following a methodology similar to the one developed by the Oxford Poverty and 
Human Development Initiative and the United Nations Development Programme. 

When assembling geospatial covariates, data on the intensity of night lights, spectral and texture features of 
satellite imagery (such as vegetation index), weather and climate indicators (such as daytime and nighttime land 
surface temperatures and rainfall), geotagged data on built-up and non-built-up areas, land cover class, population 
density, road length and/or density, and density of specific points of interest were derived from OpenStreetMap. 
Geospatial data-processing algorithms were applied to aggregate the information at the tambon-level, to match 
available data on poverty rates. 

Four methods were considered in this research exercise: generalized least squares (GLS), neural networks, random 
forest estimation, and support vector regression (SVR). SVR as GLS is a regression technique commonly used 
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in development studies (Puttanapong et al. 2020). In general, SVR is a nonprobabilistic binary linear classifier 
that applies various forms of kernel functions to minimize classification errors. Kernel functions play a significant 
role in allowing the SVR method to model the nonlinear relationship, which is the key strength of SVR compared 
to conventional regression-based techniques. All techniques were implemented using their corresponding R 
packages. 

To answer the first research question—to what extent can variation in tambon-level poverty rates be explained 
by variation in the values of the assembled geospatial covariates?—the adjusted R2 was calculated. The results 
showed that between 83% and 85% of the variation in tambon-level poverty rates in 2015 could be explained by 
the covariates included in the models. 

To answer the second research question—which geospatial covariates are strongly correlated with poverty rates?—
the explanatory power of each covariate using the “variable importance” and “minimal depth” methods was 
considered. Figure 6.1 shows that variables related to urban density have a high degree of contribution to predicting 
the variation of the poverty rate. Particularly, the indicators of night light intensity, land surface temperature, rainfall, 
and road density earned high scores of variable importance. The results obtained from the minimal depth method 
also point to similar findings, revealing that night light intensity, land surface temperature, rainfall, and road density, 
as well as areas covered with woody savannas, are key geographical features associated with poverty rates. 

To answer the third research question—which algorithms perform well in predicting poverty?—the root mean 
square error (RMSE) of each model was calculated, with the results showing that random forest estimation yielded 
the lowest RMSE. This finding was supported when the actual values of poverty rates were plotted on the x-axis 
and the predicted values on the y-axis (Figure 6.2). The points are color-coded based on the method used to derive 
the predictions. Intuitively, points clustering near the 45-degree line suggested high predictive performance of the 
model. Again, ridge regression predictions cluster closer to the line of perfect prediction, relative to other methods. 
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Figure 6.1: Relative Importance of Variables

ESALC_10= ESA Land Cover, pixel count of Cropland, rainfed, 2017; ESALC_11 = ESA Land Cover, pixel count of Herbaceous 
cover, 2017; ESALC_12 = ESA Land Cover, pixel count of Tree or shrub cover, 2017; ESALC_20 = ESA Land Cover, pixel count 
of Cropland, irrigated or post-flooding, 2017; ESALC_30 = ESA Land Cover, pixel count of Mosaic cropland (>50%) / natural 
vegetation (tree, shrub, herbaceous cover) (<50%), 2017; ESALC_40 = ESA Land Cover, pixel count of Mosaic natural vegetation 
(tree, shrub, herbaceous cover) (>50%) / cropland (<50%), 2017; ESALC_50 = ESA Land Cover, pixel count of Tree cover, 
broadleaved, evergreen, closed to open (>15%), 2017; ESALC_60 = ESA Land Cover, pixel count of Tree cover, broadleaved, 
deciduous, closed to open (>15%), 2017; ESALC_61 = ESA Land Cover, pixel count of Tree cover, broadleaved, deciduous, closed 
(>40%), 2017; ESALC_70 = ESA Land Cover, pixel count of Tree cover, needleleaved, evergreen, closed to open (>15%), 2017; 
ESALC_110 = ESA Land Cover, pixel count of Mosaic herbaceous cover (>50%) / tree and shrub (<50%), 2017; ESALC_120 
= ESA Land Cover, pixel count of Shrubland, 2017; ESALC_121 = ESA Land Cover, pixel count of Evergreen shrubland, 2017; 
ESALC_130 = ESA Land Cover, pixel count of Grassland, 2017; ESALC_150 = ESA Land Cover, pixel count of Sparse vegetation 
(tree, shrub, herbaceous cover) (<15%), 2017; ESALC_160 = ESA Land Cover, pixel count of Tree cover, flooded, fresh or 
brackish water, 2017; ESALC_200 = ESA Land Cover, pixel count of Bare areas, 2017; GEE_2017_Rain_Sum = amount of 
rainfall, 2017; VIIRS_2017 = VIIRS cloud mask—outlier removed—nighttime lights average, 2017; GEE_2016_LSTN_mean = 
Land Surface Temperature at Night, 2016; GEE_2016_NDVI = Normalized Difference Vegetation Index, 2016; GHSLsmod_2 
= Global Human Settlement Layer, pixel count of “urban clusters” or low-density clusters, 2017; GHSLsmod_3 = Global Human 
Settlement Layer, pixel count of “urban centres” or high-density clusters, 2017; GUF_255 = Global Urban Footprint, pixel count 
of built-up areas; MOI_2017_POP_Density= population density; OSM_2017_Build_Density = Total sq. meter of building per 
area, 2017; OSM_2017_Road_L_Density = Total length of road paths per area, 2017; OSM_POI_EDU_HEALTH_ENTRTN = 
Number of POIs in 2017 of this type: public administration and defense; compulsory social security / education / human health 
activities / arts, entertainment and recreation / other service activities; OSM_POI_ICT_FIN = Number of POIs in 2017 of this 
type: information and communication / financial and insurance activities / real estate activities / professional, scientific, and 
technical activities / administrative and support service activities; OSM_POI_MANF_UTIL = Number of POIs per sq km in 2017 
of this type: mining and quarrying / manufacturing / electricity, gas, steam, and air conditioning supply / water supply, sewerage, 
waste management and remediation activities / construction; OSM_POI_PUBLIC_ADM = Number of POIs in 2017 of this type: 
public administration and defense; compulsory social security / education / human health activities / arts, entertainment and 
recreation / other service activities; OSM_POI_TRADE_TRNPRT = Number of POIs in 2017 of this type: wholesale and retail 
trade and repair of motor vehicles / transportation and storage / accommodation and food service activities; USGS_0 = USGS 
Land Cover, pixel count of Water (2001–2010 data); USGS_2 = USGS Land Cover, pixel count of Evergreen Broadleaf Forest 
(2001–2010 data); USGS_5 = USGS Land Cover, pixel count of Mixed Forests (2001–2010 data); USGS_8 = USGS Land Cover, 
pixel count of Woody Savannas (2001–2010 data); USGS_9 = USGS Land Cover, pixel count of Savannas (2001–2010 data); 
USGS_11 = USGS Land Cover, pixel count of Permanent Wetland (2001–2010 data); USGS_12 = USGS Land Cover, pixel count 
of Croplands (2001–2010 data); USGS_13 = USGS Land Cover, pixel count of Urban and Built-up (2001–2010 data); USGS_16 
= USGS Land Cover, pixel count of Barren or Sparsely Vegetated (2001–2010 data); VIIRS_2017 = VIIRS cloud mask—outlier 
removed—nighttime lights average DNB radiance, 2017, per area.
Source: Calculations generated by the study team.
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Figure 6.2: Actual versus Predicted Income and Multidimensional Poverty Rates

GLS = Generalized Least Squares, NN = Neural Network, RF = Random Forest, SVR = Support Vector Regression, TPMAP = Thai 
People Map and Analytics Platform.
Source: Calculations and graphics generated by the study team.
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7 Summary and Conclusion

B ig data and advanced digital technologies are increasingly being considered to complement and refine the 
statistics currently being produced by national statistics offices. It is a move designed to help meet the 

expansive data requirements of the Sustainable Development Goals and other key development indicators. 

This study explored the use of data from satellite imagery and machine learning algorithms to enhance the 
granularity of poverty estimates published by the Government of Thailand, with the ultimate aim of helping to 
ensure that economic growth is inclusive and no one gets left behind. 

A convolutional neural network and ridge regressions were used to predict grid-level poverty rates across Thailand, 
while the random forest method was used to estimate grid-level populations and calculate poverty head counts. 
The results indicate that the machine learning estimates at the grid-level simulated the spatial distribution of the 
government-published poverty rates. For areas where the published rates were lower or higher relative to other 
areas, the machine learning estimates showed the same pattern. Areas with very high rates of poverty as published 
by the government tended to be underestimated under the machine learning method. 

To evaluate whether or not the predictive performance would increase with variability, the data were regressed on 
a multidimensional poverty index and ownership of assets. The results suggest that the performance prediction 
improved when the variable had a reasonable amount of variation.

Validation through ground-truth data was not feasible due to the impacts of the COVID-19 pandemic. Comparing 
the use of satellite imagery and machine learning to a simpler model, results show that the approach using machine 
learning and satellite images performed better. Another finding is that the machine learning approach was more 
sensitive to high-quality input data.

An exercise was conducted to explore alternative methods of predicting poverty using specific pre-compiled 
geospatial variables. It aimed to assess the extent of variation in tambon-level poverty rates that can be explained 
by variation in the geospatial covariates—which of these covariates are strongly correlated with poverty, and which 
algorithms perform well in predicting poverty? The income poverty rates and multidimensional poverty index were 
used, while the geospatial data comprised intensity of night lights, vegetation index, land surface temperature, 
rainfall, road length and/or density, and density of points of interest. The methods considered were generalized 
least squares, neural networks, random forest estimation, and support vector regression. 

As seen in the results, 83% to 85% of the variation in tambon-level poverty estimates could be explained by the 
independent covariates. Using the variable importance and minimal depth methods, the indicators on night light 
intensity, land surface temperature, rainfall, road density, and areas covered by woody savannas were the key 
geographical features associated with poverty. Among the approaches examined, ridge regression yielded results 
that were closer to the line of perfect prediction. 

The use of computer vision techniques and open-source satellite imagery data to predict poverty further supports 
the findings of the study of Jean et al. (2016) that the intensity of night lights can be correlated with socioeconomic 
development. Using images with higher resolution, which will incur additional costs if obtained from proprietary 
sources, may be explored in the future. On-site validation to gather ground-truth is recommended to further 
validate the results of this study. The use of other analytic exercises using machine learning and geospatial covariates 
may be explored to build structural models that can accurately predict poverty and improve the granularity of the 
poverty estimates currently available from official sources. 
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The COVID-19 pandemic further highlighted the need for high-quality and fine-grained data for effective and 
efficient response to a range of economic and health issues. Exploring alternative ways to collect them can make 
these data more accessible. Thailand has the BMN and the NDR2 Survey to monitor the welfare of the people down 
to the villages and also serve as inputs to addressing pockets of poverty aside from the poverty maps produced by 
NSO. 

As NSOs address the demands for granular data of the development sector by evaluating different approaches 
and through partnership between central and local governments to enhance the capacities of staff in collecting 
localized data, the use of satellite imagery offers to respond to some of the shortcomings of the conventional 
poverty data. It does not intend to replace traditional sources for poverty indicators but it can serve as reference 
points in confirming estimates from conventional methodologies.

To meet the development goals of the 21st century, NSOs must invest heavily in capacity building and modern 
technology. Institutionalizing the methodology employed in this study will require access to higher-resolution 
satellite imagery and modern computing facilities. The initiative to integrate big data in national statistical systems 
will entail collaboration with academic, private, and government institutions. Forging alliances with these groups will 
ensure an exchange of ideas, knowledge, and solutions on how to maximize innovative data sources in producing 
evidence for programs on poverty reduction and a host of other urgent public policy concerns. 
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APPENDIX 
Description of Variables Used in  
the Estimation of Population Density

Type Variable Name(s) Description Source
Census y_data Country-specific census and scale National census, 

municipality level
Land Cover globcover_cls11/ globcover_dst11 Post-flooding or irrigated croplands  

(or aquatic)
GlobCover, 300 m

Land Cover globcover_cls14/ globcover_dst14 Rainfed croplands GlobCover, 300 m
Land Cover globcover_cls20/ globcover_dst20 Mosaic cropland (50–70%) / vegetation 

(grassland/shrubland/forest) (20–50%)
GlobCover, 300 m

Land Cover globcover_cls30/ globcover_dst30 Mosaic vegetation (grassland/shrubland/
forest) (50–70%) / cropland (20–50%)

GlobCover, 300 m

Land Cover globcover_cls40/ globcover_dst40 Closed to open (>15%) broadleaved 
evergreen or semi-deciduous forest (>5m)

GlobCover, 300 m

Land Cover globcover_cls50/ globcover_dst50 Closed (>40%) broadleaved deciduous 
forest (>5m)

Land Cover globcover_cls60/ globcover_dst60 Open (15–40%) broadleaved deciduous 
forest/woodland (>5m)

Land Cover globcover_cls70/ globcover_dst70 Closed (>40%) needleleaved evergreen 
forest (>5m)

Land Cover globcover_cls100/ globcover_dst100 Closed to open (>15%) mixed broadleaved 
and needleleaved forest (>5m)

Land Cover globcover_cls110/ globcover_dst110 Mosaic forest or shrubland (50–70%) / 
grassland (20–50%)

GlobCover, 300 m

Land Cover globcover_cls120/ globcover_dst120 Mosaic grassland (50–70%) / forest or 
shrubland (20–50%)

Land Cover globcover_cls130/ globcover_dst130 Closed to open (>15%) (broadleaved or 
needleleaved, evergreen or deciduous) 
shrubland (<5m)

GlobCover, 300 m

Land Cover globcover_cls140/ globcover_dst140 Closed to open (>15%) herbaceous 
vegetation (grassland, savannas or lichens/
mosses)

Land Cover globcover_cls150/ globcover_dst150 Sparse (<15%) vegetation
Land Cover globcover_cls160/ globcover_dst160 Closed to open (>15%) broadleaved forest 

regularly flooded (semi-permanently or 
temporarily)—Fresh or brackish water

GlobCover, 300 m

Land Cover globcover_cls170/ globcover_dst170 Closed (>40%) broadleaved forest or 
shrubland permanently flooded—Saline or 
brackish water

GlobCover, 300 m

Land Cover globcover_cls180/ globcover_dst180 Closed to open (>15%) vegetation 
(grassland, shrubland, woody vegetation) 
on regularly flooded or waterlogged soil—
fresh, brackish or saline water

continued on next page
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Type Variable Name(s) Description Source
Land Cover globcover_cls190/ globcover_dst190 Artificial surfaces and associated areas 

(Urban areas >50%)
GlobCover, 300 m

Land Cover globcover_cls200/ globcover_
dst200

Bare areas

Land Cover globcover_cls210/ globcover_dst210 Water bodies GlobCover, 300 m
Land Cover globcover_cls220/ globcover_

dst220
Permanent snow and ice GlobCover, 300 m

Protected Areas protected_areas_100/ protected_
areas_dist_100

Protected area Protected Planet

Map Features cities_100/ cities_dist_100 City OpenStreetMap
Map Features clinics_100/ clinics_dist_100 Clinic OpenStreetMap
Map Features hamlets_100/ hamlets_dist_100 Hamlet OpenStreetMap
Map Features hospitals_100/ hospitals_dist_100 Hospital OpenStreetMap
Map Features pharmacies_100/ pharmacies_

dist_100
Pharmacy OpenStreetMap

Map Features railways_100/ railways_dist_100 Railway OpenStreetMap
Map Features rivers_100/ rivers_dist_100 River OpenStreetMap
Map Features schools_100/ schools_dist_100 School OpenStreetMap
Map Features suburbs_100/ suburbs_dist_100 Suburb OpenStreetMap
Map Features towns_100/ towns_dist_100 Town OpenStreetMap
Map Features villages_100/ villages_dist_100 Village OpenStreetMap
Map Features water_100/ water_dist_100 Water OpenStreetMap
Elevation hydro_ele_100 Elevation HydroSHEDS, 

100 m
Slope hydro_slo_100 Slope HydroSHEDS, 

100 m
Net Primary 
Production

modis_100 Amount of carbon captured by plants MODIS, 250 m

Precipitation wc_prec_100 Monthly data on precipitation WorldClim, 1 km
Temperature wc_temp_100 Monthly data on temperature WorldClim, 1 km
Nighttime Lights night_lights_100 Lights at night VIIRS, 500 m

< = less than, > = greater than, km = kilometer, m = meter, MODIS = Moderate Resolution Imaging Spectroradiometer, VIIRS = Visible 
Infrared Imaging Radiometer Suite.
Notes: The variable name with “cls” refers to a binary classification describing whether an area is covered by the given land cover 
class. The variable name with “dst” refers to the Euclidean distance to the next area covered by the given land cover class. The 
variable na me without “dist” refers to a binary classification describing whether an area is covered by the given feature and the 
variable name with “dist” refers to the Euclidean distance to the next feature of this type.

Appendix Table continued
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